
Transparent Process Migration

in the

Sprite Operating System

Frederick Douglis

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley, California 94720

September 1990

Transparent Process Migration in the Sprite Operating System

Copyright
c
1990 by Frederick Douglis.

This work was supported in part by the Defense Advanced Research Projects Agency

under contract N00039-85-C-0269 and in part by the National Science Foundation under

grant ECS-8351961. Additional funding came from the General Electric Corporation and

from the California MICRO program.

ii

Transparent Process Migration in the

Sprite Operating System

by

Frederick Douglis

Abstract

The Sprite operating system allows executing processes to be moved between hosts at

any time. We use this process migration mechanism to o�oad work onto idle machines,

and also to evict migrated processes when idle workstations are reclaimed by their owners.

Sprite's migration mechanism provides a high degree of transparency both for migrated

processes and for users. Transparency is ensured by managing shared data structures on a

single site and redirecting operations on those structures to the host managing them. Idle

machines are identi�ed, and eviction is invoked, automatically by daemon processes. On

Sprite it takes up to a few hundred milliseconds on SPARCstation 1 or DECstation 3100

workstations to perform a remote exec, while evictions typically occur in a few seconds.

The pmake program uses remote invocation to invoke tasks concurrently. Compilations

commonly obtain speedup factors in the range of three to six; they are limited primarily

by contention for centralized resources such as �le servers. CPU-bound tasks such as sim-

ulations can make more e�ective use of idle hosts, obtaining as much as eight-fold speedup

over a period of hours.

Process migration has been in regular service for almost two years, used by over 20

day-to-day users of Sprite for nearly all compilations as well as most simulations. Empirical

measurements of migration use over periods of time ranging from a month to a year are

presented. These measurements include the overall use of migration (31% of all processing

in Sprite was performed using migration), the availability of idle hosts (71% of hosts were

available for migration during the day, with more hosts available at other times), and the

correlation between host idle time and likelihood of eviction (evictions were likely only when

hosts that had just become idle were used).

iii

Acknowledgments

I would like to thank several persons for their contributions to this thesis and to my

research. My advisor, Professor John Ousterhout, has helped in ways too numerous to

mention. His generous support, in terms of time, money, and patience, have helped me to

make it through the past many years. His critical attention to my writing has helped to

improve my writing skills immensely. He has demonstrated tools for e�ective management

and e�ective research, and I hope I may carry those tools in the future wherever I go.

The other members of my thesis committee, Professors Arie Segev and Alan Smith, have

also provided thoughtful comments that have served to improve both the content and the

presentation of my thesis. I appreciate all their e�orts, especially their devoting the vast

amount of time necessary to read my thesis in the short time they had available.

I would also like to thank those persons who kindly provided many constructive com-

ments on earlier drafts of this thesis: Andrew Cherenson, Thorsten von Eicken, Kinson Ho,

Michael Kupfer, and Mendel Rosenblum. They helped me give a much better draft of this

thesis to my committee than I would have otherwise.

The past and present members of the Sprite project have helped in many ways. The

original members, Andrew Cherenson, Mike Nelson, and Brent Welch, have already left

Berkeley. In their time here we went through a lot together, bringing Sprite from an

abstract idea to a real-life system we used every day. The later members of the Sprite

project, Adam de Boor, Mendel Rosenblum, Mary Baker, John Hartman, Bob Bruce, Ken

Shirri�, and Mike Kupfer, made many additional contributions to make Sprite an enjoyable

system to use and an enjoyable project to work on. Many of these people were also the

original \guinea pigs" who �rst used process migration on a regular basis. Without their

willingness to try new ideas and put up with occasional problems|sometimes interfering

substantially for a while with their ability to make progress on their own work|I would

never have had the opportunity to make process migration into a viable part of the Sprite

system. Adam de Boor deserves special thanks and recognition, since he wrote the original

pmake program and has always been willing to help me work with it.

The users of process migration in Sprite are too numerous to mention, but Garth Gibson

deserves special thanks as the person who has helped push migration beyond compilations

and made it usable for other tasks as well. He had to put up with many problems, and I

hope the payo� to him, in the form of parallel computation, was worth it.

Finally, I would like to thank my friends and family for keeping me going the past few

years. My bridge-playing friends, in particular, have provided vast amounts of enjoyment

(and are probably responsible for a collective total of months' worth of delay, alas). My

parents have supported me when all else failed. Of course, I cannot begin to thank my wife,

Lisa, for all that her companionship and support has meant to me.

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 Terminology : 3

1.3 Research Contributions : 4

1.4 Thesis Overview : 5

2 Background and Related Work 8

2.1 Introduction : 8

2.2 Design Considerations : 9

2.3 Implementations of Load Sharing : 13

2.3.1 Remote Invocation : 13

2.3.2 \Checkpoint/Restart" : 15

2.3.3 General Process Migration : 16

2.4 Applications : 20

2.4.1 Parallel compilation : 20

2.4.2 Distributed Applications : 21

2.5 Summary : 21

3 Load Sharing in Sprite 22

3.1 Introduction : 22

3.2 Sprite : 22

3.2.1 Considerations for Migration Design : : : : : : : : : : : : : : : : : : 23

3.3 Load Sharing Design : 24

3.3.1 Transparent Process Migration : 25

3.3.2 Policy : 25

3.4 Summary : 26

iv

CONTENTS v

4 Process Migration Mechanism 27

4.1 Introduction : 27

4.2 Process Transfer : 28

4.2.1 Virtual Memory Transfer : 29

4.2.2 Migrating Open Files : 32

4.2.3 The Process Control Block : 33

4.2.4 The Fragility Problem : 33

4.2.5 Migration Procedure : 34

4.3 Supporting Transparency: Home Machines : : : : : : : : : : : : : : : : : : : 35

4.3.1 Messages Versus Kernel Calls : 35

4.3.2 Achieving Transparency : 36

4.4 Residual Dependencies : 40

4.5 Summary : 41

5 Interaction with the File System 42

5.1 Introduction : 42

5.2 The Sprite File System : 44

5.2.1 Transparent File Access : 44

5.2.2 File Data Caching : 47

5.3 Transferring Open Files : 48

5.3.1 Close-and-reopen : 48

5.3.2 Shared Access Positions with Atomic Transfer : : : : : : : : : : : : : 48

5.4 File Caching : 52

5.4.1 Cache Flushing During Migration : 53

5.4.2 Cache Flushing Due to Load Sharing : : : : : : : : : : : : : : : : : : 54

5.5 Summary : 56

6 Host Selection 57

6.1 Introduction : 57

6.2 Host Selection Criteria : 57

6.2.1 The Sprite Policy : 59

6.3 Host Selection Mechanism : 62

6.3.1 Shared File : 63

6.3.2 Central Server : 66

6.3.3 Distributed Servers : 70

vi CONTENTS

6.3.4 Multicast Requests : 73

6.4 Summary : 75

7 Performance 76

7.1 Introduction : 76

7.2 Implementation Summary : 77

7.2.1 Mechanism : 77

7.2.2 Policy : 77

7.3 Constituent Costs : 78

7.3.1 Host Selection : 78

7.3.2 State Transfer : 79

7.3.3 Forwarding Kernel Calls : 80

7.4 Application performance : 82

7.4.1 Representative Pmake Performance : : : : : : : : : : : : : : : : : : : 82

7.4.2 Limiting Factors : 84

7.4.3 Simulations : 89

7.5 Conclusions : 91

8 Empirical Results 92

8.1 Introduction : 92

8.2 Overall Usage : 94

8.3 Process Eviction : 95

8.4 Migration Frequency and Costs : 96

8.5 Host Selection : 98

8.5.1 Availability of Idle Hosts : 99

8.5.2 Host Allocations : 99

8.5.3 Host Idle Times : 100

8.5.4 Fairness Considerations : 100

8.5.5 Reusing Hosts : 101

8.6 Conclusions : 102

9 Conclusions and Future Work 105

9.1 Introduction : 105

9.2 Summary of Results : 105

9.3 Future Work : 106

9.4 Conclusion : 108

CONTENTS vii

A System Call Management 109

B Compilation Speedup 113

List of Figures

2.1 Models for load sharing : 11

4.1 Di�erent techniques for transferring virtual memory : : : : : : : : : : : : : 31

4.2 Transparent management of kernel calls by a foreign process : : : : : : : : : 39

5.1 Shared streams across a network : 43

5.2 File servers versus I/O servers : 45

5.3 File state : 46

5.4 Shadow streams : 50

5.5 Transferring open �les : 51

6.1 Host selection using a shared �le : 65

6.2 Host selection using a central server : 67

6.3 Host selection using multiple servers : 71

6.4 Query-based host selection using multicast : : : : : : : : : : : : : : : : : : : 74

7.1 Comparison between local and remote execution of programs : : : : : : : : 81

7.2 Sample of pmake execution : 83

7.3 Speedup of compilations using a variable number of hosts : : : : : : : : : : 85

7.4 Performance of recompiling the Sprite kernel using a varying number of hosts

and the pmake program : 87

7.5 Processor and network utilization during the 12-way pmake : : : : : : : : : 88

7.6 Overall processor and network utilization as a function of hosts used : : : : 89

7.7 Server processor utilization over time as a function of the number of hosts

used in parallel : 90

8.1 Distribution of host requests and satisfaction rates : : : : : : : : : : : : : : 104

viii

List of Tables

6.1 Criteria for host selection : 59

6.2 Architectures for host selection : 64

7.1 Costs of host selection : 79

7.2 Costs associated with transferring processes : : : : : : : : : : : : : : : : : : 80

7.3 Workload for comparisons between local and remote execution : : : : : : : 81

7.4 Examples of pmake performance : 84

8.1 Remote processing use over a one-month period : : : : : : : : : : : : : : : : 94

8.2 Frequency of di�erent forms of migration over a 1-month period : : : : : : : 96

8.3 Characteristics of migrating processes : 97

8.4 Caching behavior as a result of migration : : : : : : : : : : : : : : : : : : : 98

8.5 Host availability : 99

8.6 Relationship between idle time and eviction likelihood : : : : : : : : : : : : 101

B.1 Speedup of compilations using a variable number of hosts : : : : : : : : : : 113

ix

Chapter 1

Introduction

1.1 Motivation

In the past several years, computer use has shifted from relatively slow time-sharing main-

frames to higher performance personal workstations, with two results. First, in a collection

of personal workstations, many machines are typically idle at any given time. These idle

hosts represent a substantial pool of processing power, many times greater than what is

available on any user's personal machine in isolation. As this dissertation describes, appli-

cations can make use of additional processors by performing tasks in parallel.

Second, users have become accustomed to having a workstation to themselves. If some-

one else starts using a workstation remotely for a compute-bound or memory-intensive

activity, the user sitting in front of the workstation will likely notice degraded interactive

response. In the time-sharing machines of the past, large variations in load were inevitable,

and users became accustomed to the corresponding variations in interactive response. In

contrast, workstation users have come to expect quick, predictable response and are un-

likely to tolerate mechanisms that threaten interactive performance.

1

A mechanism to take

advantage of idle hosts should therefore also address the preeminence of workstation owners

on their own machines.

A wide-ranging set of applications potentially can make use of a facility to execute

processes on multiple hosts. Programs with many short, independent tasks (such as com-

pilations) can easily perform work in parallel if multiple processors are available. A user

who returns to a workstation that is executing such a small task is unlikely to notice a

substantial performance degradation for more than a few seconds, since any \freeloading"

processes would complete in a short time. However, many long-running applications could

also run e�ciently in parallel on separate hosts: for example, simulators are commonly run

multiple times with varying parameters, and multiple instances of a simulator could run

1

On the subject of workstations versus time-sharing systems, the famous one-liner by Jim Morris comes

to mind: \The nice thing about an Alto is that it doesn't get faster at night." [Mor]

1

2 CHAPTER 1. INTRODUCTION

simultaneously and report their results to a coordinating process. Simulators often take

minutes or hours to execute; if a simulator is consuming memory and processor cycles on

a host whose owner returns, the owner may be adversely a�ected for a prolonged period of

time.

One possible mechanism for taking advantage of idle hosts is remote invocation: pro-

grams may be started on other hosts but not moved once they have begun. An example

of a remote invocation facility is the Berkeley UNIX rsh [Com86] command, which sends

commands and their arguments to an intermediary on another host and receives the output

of the commands from the intermediary. Though rsh is widely available, it is not commonly

used to execute commands at the level of small tasks such as individual compilations, be-

cause the overhead of invoking rsh is high. Each command is executed almost as though the

user were establishing a new login session on the remote host. Other commands exist that

are similar to rsh in functionality but have lower overhead; these facilities include Topaz's

\distant processes" [RE87] and SunOS's rex [Sun87].

Performance considerations aside, remote invocation does not o�er the exibility or ease

of use that is desirable for automatic use of idle hosts in a workstation environment. The

greatest problem is workstation ownership: if processes can start on new hosts but not

move between hosts once they are started, then a host cannot easily be relinquished once

a command has started to execute. Location transparency to the process and to the user

are also important. If the environment of the process on a remote host is di�erent from the

execution environment on the user's own machine, then the process may behave di�erently

depending on where it executes|or it may have to be specially coded to handle remote

execution. For example, rsh recreates the user's environment completely from scratch, and

rex passes environment variables and the current working directory to the remote host but

does not provide access to devices on the user's own machine. Neither of these facilities

could support remote execution of arbitrary processes. Finally, processes that are created

using nontransparent remote execution facilities are isolated from the user: the user's listing

of processes will contain entries for a command such as rsh but no information about the

status of processes on the remote machine. The more remote execution is integrated into

the local execution environment, the easier it is for users to take advantage of it.

This dissertation describes an alternate approach to remote invocation, called process

migration. A process migration facility moves a process's execution site at any time between

two machines of the same architecture. Migration allows processes to be o�oaded to idle

hosts, and it also allows a system to preserve host autonomy by evicting processes from

hosts that are no longer idle. Remote invocation is a natural (and commonly used) subset

of process migration. To invoke a command remotely, a process migrates to a new host as

it replaces its execution image.

For process migration to be useful, it should be transparent and automatic. Migration

needs to be transparent both to the user who runs a remote process and the process itself.

With respect to the user, migrated processes should appear as though they were all running

on the user's own host: in a listing of processes, rather than seeing several entries for rsh,

1.2. TERMINOLOGY 3

the user might see a number of compilations accumulating processor time. The user could

suspend or terminate those processes with no knowledge of the hosts on which they are

actually executing. The more important aspect of transparency, however, is its impact on

a migrated process. Programs should not need to be coded specially to take migration into

account, as long as they are capable of being executed as multiple processes in parallel on a

single host. A migrated process should have exactly the same access to system resources as

an unmigrated process; if it does not (i.e., if the migration mechanism is non-transparent),

then processes may need be restricted from particular operations in order to be able to move

between machines. For example, the V System restricts process migration to programs

whose output does not depend upon their location [The86], and Remote UNIX migrates

only single-process noninteractive jobs that are not permitted to communicate with other

processes [Lit87]. Ideally, any process should be able to migrate at any time without

a�ecting its results or the results of other processes.

Process migration should be automatic in two respects. First, load should be spread

across idle machines without user intervention. The selection of what processes to migrate

and the hosts to which to migrate them can often be performed by the system. For example,

a user who types make [Fel79] to compile a program need not be aware that compilations

are performed on other hosts; the user is only aware that the compilations execute quickly.

Second, the system can preserve workstation autonomy by detecting the return of a worksta-

tion owner and evicting freeloaders (also referred to as foreign processes) from the machine,

migrating those processes elsewhere. If the processes are evicted quickly and e�ciently, the

owner may not notice their presence at all.

1.2 Terminology

In order to avoid any potential confusion in terminology, I de�ne several terms that will

arise throughout this dissertation. Whenever possible I attempt to remain consistent with

terminology used previously in the literature, but there may be some expressions that have

no standard de�nition. Some of these terms have by necessity already been introduced, but

they are repeated here for convenience.

process migration: movement of processes from one host to another during

execution.

source: host on which process executes at

time of migration.

target: host to which process is migrated.

remote execution: execution of a process on a host other than the host

used by the person who created the process.

remote invocation: starting a program on a host di�erent from the invok-

ing process.

4 CHAPTER 1. INTRODUCTION

remote execution facility: mechanism that supports remote execution via remote

invocation and/or process migration.

load sharing: act of reducing program execution time by distributing

processes among multiple hosts rather than executing

them on a single host. Load sharing does not imply

any particular mechanism, such as migration; it does

require support for remote execution.

eviction: removing a process from a host in order to prevent the

process from impacting the host, normally as a result

of the host being reclaimed by its owner.

residual dependency: an on-going need for a process on one host to interact

with entities on another host due to remote execution.

remote or

foreign process :

a process that is executing on a host other than the

host on which it would execute in the absence of remote

execution.

These terms will be discussed in detail in the next chapter.

1.3 Research Contributions

This thesis describes the design, implementation, and performance of a process migration

facility for the Sprite operating system [OCD

+

88]. The goals of process migration in Sprite

are, �rst, to make the computing power of a collection of workstations available to users as

though it were a single, fast time-sharing system; and second, to respect the response-time

demands of individual users.

One major contribution of this thesis is the observation that simple methods may be used

to migrate processes with high transparency and performance. I examine di�erent methods

for transferring processes between hosts and the e�ects of these methods on transfer time,

implementation complexity, and residual dependencies.

A second contribution is an analysis of the interactions between process migration and

other components of a distributed system, and methods to manage those interactions. State

that is shared by multiple processes on a single host can become distributed across multiple

hosts as a result of migration (o�sets into open �les are an example of this type of state).

Also, process migration a�ects the set of hosts that access �les at a given time, which in

turn a�ects the operations needed to ensure consistent �le caches. I describe an approach

for ensuring consistent access to shared data structures and location-speci�c resources.

A third contribution is a reevaluation of di�erent techniques for controlling access to idle

hosts. The relative advantages and disadvantages of centralized and distributed techniques

1.4. THESIS OVERVIEW 5

for �nding idle hosts, with respect to simplicity, scalability, performance, and fault tolerance,

have been discussed in the literature with no clear-cut resolution (e.g., [BSW89, TL88,

The86]). I examine a range of approaches to this problem and conclude that a centralized

approach has advantages over distributed approaches in nearly all aspects.

A fourth contribution, and perhaps the most important one, is a demonstration of the

e�ectiveness of process migration in a production environment. I present measurements of

the use of migration over a period of up to a year in a community of approximately 20

users. Migration is used automatically for compilations, and some simulators use migration

as well. In addition, any command may be executed on an idle host upon the speci�c

request of a user. During the measured period, migration provided approximately an 80%

increase in available processing cycles. Evictions have occurred at a rate of approximately

30 per day, demonstrating the desirability of migration above and beyond simpler remote

invocation.

Though it has been implemented in several systems, process migration is not yet \taken

for granted" by the general public, or by the research community. (It is, however, taken for

granted by Sprite users.) This thesis will show that migration has many bene�cial e�ects and

can be implemented in a general-purpose operating system without undue complexity. In

future years process migration can, and should, become as commonplace as shared network-

wide �le systems are today.

1.4 Thesis Overview

The next chapter discusses previous work in the area of load sharing. I consider the two

primary components of load sharing: the mechanism that supports remote execution and the

policy that decides what processes run on what hosts. Most previous work has emphasized

one or the other but not both. I present several criteria for the design of load sharing

facilities and evaluate existing implementations based on those criteria.

The focus of this thesis is a transparent load sharing facility, using process migration,

which I have built in the context of the Sprite operating system. Chapter 3 describes the

environment for which this facility was designed: a cluster of personal workstations, many

of which are idle at any time, each of which is dedicated primarily to a single user when

that user is present. It then describes the overall design of the load sharing facility: the way

transparency and autonomy are supported, and the way processes and hosts are selected

for remote execution.

Chapter 4 describes Sprite's process migration mechanism in detail. Process migration

consists of two interacting phases: process transfer and process execution. The amount

of state transferred during the �rst phase a�ects both the speed of migration and the

speed of process execution during the second phase. Since virtual memory transfer is the

aspect of process migration that distinguishes most migration facilities, I compare Sprite's

transfer method to those in several other systems with respect to complexity, speed, and

reliability. I also describe how Sprite makes processes depend on a single host (called the

6 CHAPTER 1. INTRODUCTION

\home machine") for resources throughout their lifetime, in order to provide a high degree

of transparency. On the other hand, a host that evicts processes need not devote resources

to the processes after eviction (i.e., processes have \residual dependencies" on their home

machine but not on another user's machine).

In Sprite, the greatest complexity in the process migration facility arises from the in-

teraction between migration and the �le system. The complexity arises in two ways: the

need to support UNIX semantics for shared �le streams and deleted �les in the face of

migration, and the need to keep caches consistent as processes execute on di�erent hosts.

Chapter 5 describes how Sprite transfers open �les and supports UNIX semantics for �les

that are shared by processes across a network. It then analyzes the e�ect of Sprite's cache

consistency policy on migration overhead, load sharing performance, and complexity.

The usefulness of load sharing depends not only on the ability to execute processes

on remote hosts transparently and e�ciently, but the ability to select suitable targets for

remote execution as well. In Chapter 6, I discuss possible criteria for determining when a

host is available for load sharing, and I compare several techniques for managing the state

of hosts in a system and allocating idle hosts to processes. Host selection facilities are

distinguished by a number of qualities, including whether the state of each host is stored

on a single host or distributed throughout the system and whether decisions about host

allocation are made by a single process or by processes on many or all hosts. I conclude

that a centralized server process has advantages over other models in the areas of scalability,

complexity, and (most importantly) fairness of host allocations.

Chapter 7 reports on the performance of process migration in Sprite. Performance

depends on the cost of transferring executing processes and the overhead of supporting

transparent remote execution. The overall performance improvement available through

load sharing also depends on the extent to which data must be transferred among processes

executing on di�erent hosts, as well as any system-wide performance degradation due to

increased network and server processor loads. Speedup factors in the range of 3{6 are

common for compilations, using from 4{12 hosts. The nonlinear speedup is due to the high

utilization of the �le server's processor as well as the cost of transferring object �les between

hosts. However, CPU-bound applications such as simulations do not contend for centralized

resources such as a �le server or the network, and simulations can therefore obtain much

greater performance improvements (8-fold speedups are common).

By observing usage patterns over a period of time, it is possible to validate the design of

Sprite's process migration facility and learn ways in which it might be improved. Chapter 8

presents empirical measurements of migration over periods ranging from several weeks to

a year. These measurements include the frequency and average cost of remote invocation

and eviction; the frequency and success rate of host selection; and the overall processor

utilization of the system for both local and remote processes. On the whole, migration has

provided about a third of all processing performed in Sprite, with some hosts performing

70{90% of their processing using migration.

Finally, Chapter 9 concludes this dissertation and o�ers suggestions for future work in

1.4. THESIS OVERVIEW 7

the area of process migration.

Chapter 2

Background and Related Work

2.1 Introduction

Previous work in the area of load sharing has typically been divided into two areas, mecha-

nism and policy. The mechanism supports remote execution: starting programs on di�erent

hosts, managing processes that are running on di�erent hosts, and (possibly) moving pro-

cesses between hosts. The policy determines what processes execute remotely, where they

execute, and when they may migrate. Some systems implement primarily a remote execu-

tion mechanism but provide little or no support for automatic selection of hosts or processes;

for example, the Berkeley UNIX rsh command permits a user to execute a speci�c command

on a particular host. Similarly, many studies of policy alternatives have been made without

assuming any particular underlying mechanism for providing remote execution. Recently, a

small number of systems have combined mechanism and policy into integrated load sharing

facilities, and applications have been developed to take advantage of load sharing in these

systems.

The dichotomy between policy and mechanism arose from the lack of integration of

typical computing environments. Though hosts could communicate via networks, every

host had its own disks and its own �le system, so the �les accessible to a program that

was run on one host would not be accessible to it on another. Programs could run on

di�erent hosts only if they performed input and output on a restricted set of �les (for

example, �les that are known to be identical on every machine) or they copied all the �les

they accessed to and from the host on which they executed. The lack of a general remote

execution mechanism prevented load sharing policies from being implemented in actual

systems, though they were of theoretical interest.

The advent of NFS [SGK

+

85] and other network �le systems dramatically simpli�ed

remote execution. Processes on di�erent hosts could now share a similar, if not identical,

�le system. Programs such as compilers could run equally well on any host that had the same

�le systems mounted, so a program such as make could be modi�ed to execute compilations

in parallel on remote hosts. With transparent remote �le access, automatic load sharing is

8

2.2. DESIGN CONSIDERATIONS 9

much more attainable than with distinct autonomous hosts.

Just because automatic load sharing is attainable, however, does not mean that imple-

menting a system with load sharing would necessarily be worthwhile; that is, would load

sharing provide a signi�cant increase in productivity? The potential for improvement arose

from the same environmental changes that caused network �le systems to become common-

place: the shift from mainframes to personal workstations. Not only does a system with

many workstations have much more raw processing capacity than a typical time-sharing

computer, but many of the workstations are idle at any given time. Idle hosts are especially

common in academic environments:

� Mutka and Livny reported that on average, 70% of workstations in their environment

were idle [ML87].

� Theimer and Lantz reported that one-third of the 70 workstations in a particular

cluster were completely idle, even during the day [TL88].

� In the Butler system, 50{70 out of 350 workstations were typically in the free pool

during the day, with over 100 available machines at night [Nic87].

� My own results, presented in Chapter 8, indicate that 65{70% of hosts in Sprite are

idle on average during the day, with up to 80% idle at night and on weekends.

The rest of this chapter is organized as follows. In Section 2.2, I consider some of

the trade-o�s one might face when designing a remote execution facility, as well as the

characteristics that distinguish one design from another. Section 2.3 then describes several

existing remote execution and process migration facilities and evaluates them on the criteria

presented in Section 2.2. Finally, Section 2.4 describes how load sharing can interact with

speci�c applications.

2.2 Design Considerations

A number of issues arise in the design of a load sharing facility. In many cases, di�erent goals

conict, and one must trade o� among several factors. The underlying remote execution

mechanism and the higher-level load sharing policy can inuence each other considerably.

Design considerations include:

� Transparency. Remote execution should be location-transparent, so that the phys-

ical location of a process is not apparent to either the process itself or the user who

invoked it. If execution is location-transparent, then processes should be able to ac-

cess location-dependent resources, such as the display, time-of-day clock, host name,

and so on, without special coding to handle remote execution. Similarly, location-

transparent execution permits users to interact with processes uniformly regardless of

where the processes execute, so that users need not use special commands to interact

10 CHAPTER 2. BACKGROUND AND RELATED WORK

with remote processes. For example, a user who performs a remote compile may wish

to estimate how much longer the compilation will execute, based on how much pro-

cessor time it has accumulated. Without a transparent facility, the user might run ps

on each host, using rsh, to list the status of processes on the host. Better yet, with a

fully transparent remote execution facility, the user could run ps on his own host to

determine the same information.

� Autonomy. How and when should processes be distributed to other hosts?

{ At one end of the policy spectrum lies the pool of processors model. In this

model interactive processes and processor-intensive applications are kept dis-

tinct. Interactive computation, such as window management, is performed on a

di�erent machine for each user. Other computation is performed on a collection

of processors shared by all users. On those processors, all scheduling decisions

are made automatically by system software. Users submit jobs to the system

without any idea of where they will execute, and users do not have priority for

particular machines. Amoeba [MvRT

+

90] and Plan 9 [PPTT90] are examples of

this approach.

{ At the other end of the policy spectrum lies rsh, which provides no policy support

whatsoever. In this model, each host is completely independent. Individual users

are responsible for locating idle machines, negotiating with other users over the

use of those machines, and deciding which processes to o�oad. In the normal

case, users execute processes only on their own hosts. (Note that rsh is an

extreme example, which I use to highlight certain issues of transparency and

automation; it is not actually an example of \load sharing" in practice.)

{ Process migration is an intermediate point along the policy spectrum. The pro-

cessing power of the system is not managed as a single common resource, as

with the \pool of processors" approach, nor is it managed completely indepen-

dently by each host, as with rsh. With process migration, processes can execute

on hosts when they are idle, and migrate elsewhere (or terminate) if a host is

reclaimed by its owner.

Figure 2.1 shows the three approaches just described.

� Performance. The performance of a load sharing facility has several components,

including the time to select hosts, the time to move an existing process or start a

new process remotely, and any performance penalty resulting from executing on a

remote host. Performance interacts strongly with many other design considerations,

especially transparency and fault tolerance, as described below and in Chapter 4.

� Residual dependencies. I have de�ned a residual dependency as an on-going need

for a host to maintain data structures or provide services to a process even after

the process migrates away from the host. For example, a host might be required to

forward interprocess communication to a process after the process migrates, or the

2.2. DESIGN CONSIDERATIONS 11

graphics terminals

processor pools

(a) Pool of Processors

workstations
file server

workstations

(b) Autonomous Hosts

workstations
file server

workstations

(c) Process Migration

Figure 2.1: Models for load sharing. Figure (a) depicts a \pool of processors" approach in

which users work on graphics terminals that provide a window system but do no other computation.

Shared processor pools are used for most computations. Figure (b) shows the opposite end of the

policy spectrum, in which each user runs processes on his or her own workstation, and processes

execute completely on a single host unless they are explicitly started on a remote host. Figure (c) is

similar to Figure (b), except that processes on one workstation can transparently create and interact

with processes on other workstations. With (c), processes can move between workstations in order

to preserve workstation autonomy.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

process might send requests to the host to access a device. Some residual dependencies

are unavoidable: for example, a process that writes its output to the user's display

will continue to write to that display (and therefore interact with the user's host)

after migration. When residual dependencies may be avoided, one must consider

both negative and positive aspects of residual dependencies:

{ On the one hand, a process should depend for services only on the host on

which it executes. In that case, its performance will not be adversely impacted

by communication with other hosts, and the performance of processes on other

hosts will not be degraded by requests from the remote process. Additionally,

the process will not be vulnerable to the failure of any host except the one on

which it executes.

{ On the other hand, Zayas has shown that a process with a large address space

can migrate away from a host much faster if it leaves its virtual memory pages

on the source host and retrieves them later on a demand basis [Zay87a]. In

this case, improving performance also increases the migrating process's residual

dependencies on the source. If the host with the process's memory image later

fails at any time during the process's lifetime, the process might be unable to

execute. Increasing transparency also increases residual dependencies, since if a

process appears to execute on one host while it physically executes on another,

then both hosts must provide support to the migrated process. The failure of

either host will a�ect the functionality of the process.

� Complexity. In any system as complex as a load sharing facility, the simpler the

system is, the easier it will be to debug and maintain it. In the case of process migra-

tion, complexity is a particularly important consideration because process migration

tends to a�ect virtually every major component of an operating system kernel. If

the migration mechanism is to be maintainable, it is important to limit its impact as

much as possible.

� Fault tolerance. A load sharing facility is subject to two types of failures: an inabil-

ity to select hosts, which would prevent load sharing from occurring, and the failure of

a host involved in a particular instance of remote execution. Since a system can func-

tion without load sharing, a failure of the scheduling mechanism a�ects performance

but not functionality. The complexity of the facility may be signi�cantly reduced if

one attempts to minimize the window of unavailability following a failure, rather than

attempting to prevent failures completely. Host failures during remote execution or

process migration may be fatal to the processes involved, so one would wish to reduce

the number of dependencies that processes have on multiple hosts and/or provide

redundancy.

2.3. IMPLEMENTATIONS OF LOAD SHARING 13

2.3 Implementations of Load Sharing

In this section I describe existing implementations of load sharing facilities. I categorize

systems based on the services they provide, their underlying implementations, and their

approach toward the factors listed in Section 2.2. Section 2.3.1 describes some facilities

that perform load sharing using remote invocation but do not provide process migration.

Section 2.3.2 discusses an extension to remote execution, known as checkpoint/restart , that

permits some types of tasks to be transferred to new hosts. Finally, Section 2.3.3 describes

systems that support general process migration.

2.3.1 Remote Invocation

A large number of systems currently provide a form of remote invocation, but few o�er sup-

port for automatic selection of idle hosts, transparent remote execution, or host autonomy.

Maitre d'and Butler provide load sharing facilities using remote invocation, with varying

degrees of transparency and autonomy.

Maitre d'

Maitre d' [Ber85] is designed for a collection of time-sharing computers, each with its own

�le system. Each host typically runs two daemons, one (maitrd) that manages exporting

tasks during times of high load and another (garcon) that accepts remote tasks when the

local load is low. Each garcon periodically communicates with each maitrd in order to keep

the maitrds up-to-date about host availability. When a host is loaded, processes on that

host use maitrd to �nd a lightly-loaded host (maitrd cycles through available hosts in a

round-robin fashion). The commands are limited to a pre-determined set of programs, such

as compilations and text formatting, that are de�ned in a system-wide con�guration �le. To

compile Pascal �les, Maitre d' runs a special Pascal pre-processor on the remote host that

copies �les from the local host as they are referenced. Maitre d' uses a di�erent technique

to compile C, since much of the work compiling C may be performed using only standard

input and standard output. C pre-processing and linking are performed on the local host

regardless of load, and compilation and assembly are done remotely. The remote portion of

the compilation does not need to access any �les but system programs.

Maitre d' is transparent to users to the extent that application programs, such as com-

pilers, can run locally or remotely without user intervention and with the same results.

However, users cannot determine the status of their remote programs, or even learn where

those programs are being executed, and only a small set of programs are suitable for remote

execution using Maitre d'. Maitre d' grants local processes priority over foreign processes

by reducing the execution priority of foreign processes when the machine's load passes a

threshold. This policy has the e�ect of silently suspending the process until the load is

reduced, since the process receives little or no share of the processor. Since host selection is

distributed, the failure of one host, or one daemon, does not a�ect the ability of other hosts

14 CHAPTER 2. BACKGROUND AND RELATED WORK

to select hosts or run remote commands. Bershad found that over a two-month interval,

Maitre d' provided more predictable response times and somewhat shorter execution times

compared to a system with no load sharing. For example, the time to start up an editor

had a variance of .362 seconds when Maitre d' was used for compilations, compared to a

variance of 1.87 seconds without Maitre d', and the mean compilation time dropped from

11.9 seconds to 7.04 seconds (with a drop in its variance from 94.6 seconds to 20.42 seconds).

Butler

Butler serves as an agent to manage resources in a collection of workstations. The Butler

system has had two incarnations, one as a research prototype and one that has received

considerable use. Dannenberg's prototype [Dan82] was built on the Accent system and

used process migration to reclaim hosts; process migration in Accent is described below

in Section 2.3.3. Nichols [Nic87] reimplemented Butler for the Andrew system, making

no kernel modi�cations and requiring no changes to application programs.

1

The decision

to avoid kernel modi�cations limits Butler's functionality in exchange for simplicity and

portability. Process migration is not provided, so when hosts are reclaimed, any foreign

process on it is terminated (after notifying the process and the user running it).

Butler is used upon the explicit request of a user: the user speci�es a command to be

executed, and Butler locates an idle host and executes the command on that host. Since

the remote program can be a command interpreter, it is common for users to execute

many commands remotely in a single interactive session. Nichols noted that the overhead

of starting a program remotely is substantially greater than invoking a program from a

remote shell, so using a long-running remote shell amortizes the cost of remote execution.

In addition, �le caching e�ects make repeated use of the same machine more desirable than

using a random sequence of machines over time.

Butler is reasonably transparent and can support most programs without modi�cations.

It is not completely transparent, however, since the execution environment varies slightly

from host to host: for example, each host has its own directory for temporary �les. Since

Butler respects workstation autonomy by terminating foreign processes, it is not as conve-

nient to use as a system that migrates processes instead. (Nichols noted that the ability to

migrate existing processes would make Butler \much more pleasant to use.")

Host selection is performed in Butler using a centralized machine registry (mreg) process,

which receives periodic information from a daemon on each idle host. If the mreg process

terminates, one of the daemons reinstantiates it on an idle host. Including the overhead

to select a host and start a process on it, remote invocation using Butler takes several

seconds, indicating that Butler is not suitable for starting individual processes unless they

are expected to execute for a long period of time.

1

Unlike the Accent prototype Butler, the Andrew Butler has been used extensively; unless speci�ed

otherwise, the term Butler refers to Nichols's version for the remainder of this thesis.

2.3. IMPLEMENTATIONS OF LOAD SHARING 15

2.3.2 \Checkpoint/Restart"

If the system can checkpoint the state of a process and create a new process with that state,

it may provide a restricted form of process migration. Migration would be \restricted"

because the new process would not have the same process identi�er or parent process, and

it might not have the same access to network connections or other open �les.

Smith/Ioannidis

Smith and Ioannidis [SI89] implemented a variant of the fork() system call that would

create an executable image of a process on a new machine using checkpoint/restart. The

executable image would be copied to another host using a standard �le-copying program

such as rcp. To \migrate" itself, the parent could fork a child process onto a new host and

then exit, leaving the child running remotely.

In this system, the checkpoint contained no information about such state as open �les,

current working directory, or parent/child relationships. In addition, the system was im-

plemented on standard UNIX using NFS, so execution was not location-transparent|each

host had its own �le system name space and local devices, for example. Thus, this form of

migration would be suitable for compute-bound operations but not for processes that use

�les, unless the processes were prepared to reopen the �les subsequent to each migration.

This model of checkpoint/restart does have the advantage that a process depends only on

its current host for resources, so processes can move from a host that is about to be shut

down. It is also relatively simple to implement.

Alonso/Kyrimis

Alonso and Kyrimis [AK88] also implemented a checkpoint/restart facility on top of UNIX,

with changes to the kernel to support fast dumping and restoring of kernel data structures

and to maintain additional information about names of open �les. Unlike Smith and Ioan-

nidis's implementation, the state of most open �les is restored when a process is restarted.

(Pipes and sockets cannot be reopened.) As with the other implementation, processes can-

not depend on their execution environment, such as their process identi�ers or parent/child

relationships.

Remote Unix and Condor

Remote UNIX is a remote execution facility for UNIX, suitable for background CPU-

intensive applications [Lit87]. It requires no modi�cations to the UNIX kernel, instead

using a special run-time library to forward nearly all system calls to a surrogate process

running on the host that initiated the remote process. As in Smith and Ioannidis's system,

processes can be checkpointed and resumed elsewhere. The checkpointed state includes vir-

tual memory, registers, and open �les, but not other process-speci�c state such as network

16 CHAPTER 2. BACKGROUND AND RELATED WORK

connections or parent-child relationships. The initial implementation of Remote UNIX also

did not support several system calls, including fork(), exec(), and network-related calls,

though those were to be added.

Condor [LLM88] uses Remote UNIX to make use of idle workstations. Tasks are sub-

mitted to Condor using a \batch" mode; i.e., no interaction with the user is permitted,

and the tasks are queued for execution if no host is immediately available. Litzkow, Livny,

and Mutka measured the use of Condor over a one-month period to determine usage pat-

terns and execution overhead. They found that nearly all tasks using Condor executed for

more than an hour, using almost 200 machine-days of processing time on 23 workstations.

Condor uses the Remote UNIX checkpoint/restart mechanism to move these long-running

processes o� of hosts that are reclaimed by their owners. If no host is available, processes

are suspended and queued for later execution.

The combination of Remote UNIX and Condor is a powerful and simple tool but has a

limited domain (long-running, compute-bound batch jobs). Remote execution is transparent

to processes using the facility, and because all processes are run in batch mode, users are

not expected to interact with the processes. (Presumably Condor provides a mechanism

for users to determine the execution status of background jobs, and to terminate them.)

On the other hand, only programs that have been specially linked with the Remote UNIX

run-time library can run remotely.

Condor meets the criteria described above in Section 2.2 in many respects. It pro-

vides autonomy by checkpointing remote processes, permitting processes to be terminated

or moved elsewhere when hosts are reclaimed. It is reasonably fault-tolerant: it uses a

centralized scheduling facility that obtains information from daemons on each host, and

if the centralized facility fails it can be reinstantiated quickly on another host. However,

remote processes have residual dependencies on the host running their surrogate process,

and the failure of that host will terminate the remote process. The performance of Condor

depends on the processes that use it, since the need for a large number of forwarded system

calls makes Remote UNIX unsuitable for I/O-intensive processes. For compute-bound jobs,

Litzkow, et al., found that the overhead of remote execution was extremely low: only one

minute of local processing was needed to support nearly a day of remote processing time.

2.3.3 General Process Migration

In addition to the aforementioned systems that provide processes with the ability to start

processes on di�erent hosts, a number of systems permit processes to move during execution.

Process migration is a generalization of remote invocation, since any system that performs

migration provides remote invocation (a process forks a child, which migrates and execs

a new execution image). Compared to remote invocation, process migration provides the

additional exibility of permitting hosts to be reclaimed without the need to terminate

foreign processes. Also, systems that support process migration tend to provide a higher

degree of location transparency to remote processes than do systems that support only

remote invocation.

2.3. IMPLEMENTATIONS OF LOAD SHARING 17

Systems that support process migration can be categorized in two ways: message-passing

systems or kernel-call-based systems. Most existing implementations of process migration

are in message-passing systems (such as V, Charlotte, or Accent), where all communication

between a process and the rest of the world occurs through message channels. In these

systems, many of the transparency aspects of migration can be handled simply by redirecting

message communication to follow processes as they migrate. In UNIX-like systems, such

as LOCUS, MOSIX, or Sprite, system calls and other forms of interprocess communication

(IPC) are invoked by making protected procedure calls into the kernel. In such a system

the solution to the transparency problem is not as obvious; in the worst case, every kernel

call might have to be specially coded to handle remote processes di�erently than local

ones. In the following sections I describe how existing systems provide transparency, and

what special measures they take (if any) to improve the performance or general usability of

migration.

V System

Theimer implemented process migration in V [The86, TLC85], a message-passing system,

with an emphasis on reducing the time during which a process is moving between hosts and

unable to execute. This \freeze time" was important for two reasons that were particular

to V: �rst, it did not support virtual memory, so a process's entire address space had to

be copied to the memory of the target host during migration; and second, messages to

suspended processes could time out and result in errors. Since suspending a process for the

entire time needed to copy its address space would cause delays su�cient to generate time-

outs on messages to the process, Theimer implemented pre-copying : a process is allowed

to execute while its address space is transferred. If pages are modi�ed after being copied

to the target, they must be sent again. The procedure iterates until a small number of

pages are dirty, at which point the process is frozen and the rest of its state is transferred

(including the remaining dirty pages). Thus, the time during which a process is frozen is

minimal, but by comparison to a system that transfers memory monolithically, the total

time taken to migrate a process is increased because of the pages that must be transferred

twice. The complexity of the system is increased as well.

The V System remote execution facility is nearly completely transparent. Processes

communicate via a network-transparent interprocess communication facility, so the physi-

cal location of a process does not a�ect the ability of other processes to interact with it.

Processes themselves execute equivalently when running remotely as locally, with a small

number of exceptions; for example, if a remote process explicitly requests information about

the host on which it is executing, it is given information about its current host rather than

the host from which it was invoked.

V supports multicast , which provides an inexpensive means of communicating with

several machines simultaneously. Theimer used multicast to simplify the task of locating

processes after migration. Kernels cache the most recent known location of a process, but

if they �nd that a process is no longer at the same location, they multicast to �nd the

18 CHAPTER 2. BACKGROUND AND RELATED WORK

process's new site.

Charlotte

In Charlotte [AF89], another message-passing system, Artsy and Finkel designed migration

to be as fault-tolerant as possible. Migration can be aborted any time before migration

reaches a commit point (the time at which the process's address space and message chan-

nels are transferred). After migration, processes leave no residual dependencies, such as

forwarding pointers, on the source; therefore, the failure of a machine on which a process

had once executed does not a�ect the process unless it is communicating with other pro-

cesses on that host. By eliminating residual dependencies, Charlotte permits migration to

be used not only for host autonomy but also for fault tolerance, since processes can migrate

away from a host that is about to fail.

Charlotte message channels are bidirectional, and kernels know the location of the pro-

cess at the other end of any channel. When a process migrates, the kernels that have message

channels to it are noti�ed of its new location. The requirement of immediate noti�cation

simpli�es the implementation but degrades migration performance. As in V, processes are

accessed via communication links that are independent of location, so the act of migration

is transparent.

Accent

Dannenberg's Butler was a prototype remote execution facility that used process migration

to transfer processes between hosts [Dan82]. In this version, virtual memory was transferred

monolithically. Zayas modi�ed Accent to migrate processes using copy-on-reference virtual

memory [Zay87a, Zay87b]. When a process migrates, its memory image is initially left on

the source machine; only the process's page tables, registers, and message channels need

be transferred immediately. As the process executes, it demand-pages its memory from the

source. Zayas found that over one set of benchmarks, migration using copy-on-reference

virtual memory eliminated 21% to 96% of data transfers, compared to copying memory

directly.

Copy-on-reference memory trades migration time for increased complexity and residual

dependencies. Implementing copy-on-reference network-wide memory was complicated by

the need to add a new class of virtual memory object and the need to redesign and reim-

plement the Accent network-wide message server. Accent's process migration facility does

not fully address the issue of host autonomy, since a user's workstation would continue to

service requests after a process was evicted. It also makes a process vulnerable to the failure

of all the hosts on which it has executed, since a process that migrates several times could

potentially reference memory on each host.

Accent provides name and location transparency to processes by means of message

channels. It does not provide automatic load sharing, though Butler could easily be reim-

plemented on top of the current Accent process migration facility.

2.3. IMPLEMENTATIONS OF LOAD SHARING 19

LOCUS

LOCUS [PW85] is a UNIX-like system that provides two forms of migration, one for trans-

ferring a process at an arbitrary time and one for performing an exec on another host. By

treating exec-time migration specially, LOCUS provides fast migration in the common case

when a process's address space does not need to be transferred. When the virtual memory

of a process must be transferred, the entire data segment is copied from the source to the

target; the code segment of a migrating process normally does not need to be transferred,

since a copy may already exist on the target and otherwise can be demand-paged from the

host that stores the code.

In LOCUS, process identi�ers include an identi�er for the host on which a process is

created, known as the origin site. That host is guaranteed to know the current location

of the process. The origin site serves as a rendezvous point when other kernels need to

manipulate the process. For example, to send a signal to a process, the kernel delivers the

signal locally if the process is on the same host as the kernel, and it obtains the process's

current execution site from the origin site if not. In addition, the origin site manages

information regarding process termination. If the origin site fails, another host serves as a

surrogate origin site until the origin site becomes available again.

In UNIX-derived systems, processes inherit �le descriptors from their parents and share

a single access position into those shared �les. If process migration causes a �le access

position to be shared between processes on di�erent machines, then input or output by a

process on one machine must be reected in the access position seen by processes on other

machines. LOCUS lets the sharing machines take turns managing the access position. In

order to perform I/O on a �le with a shared access position, a machine must acquire the

\access position token" for the �le. While a machine has the access position token it caches

the access position and no other machine may access the �le. The token rotates among

machines as needed to give each machine access to the �le in turn. This approach is similar

to the approach LOCUS uses for managing a shared �le, where clients take turns caching

the �le and pass read and write tokens around to ensure cache consistency.

LOCUS remote execution is partially transparent, since process identi�ers and �le names

are globally unique, but processes execute in the environment of the machine on which they

reside. For example, they appear in the listing of active processes on that machine, and

they will obtain host information for that machine rather than their origin site.

The AIX Transparent Computing Facility [WM89], which derived from LOCUS, supplies

some programs to help users select machines for remote execution. It allows users to specify

that programs should be run on lightly-loaded hosts, or for daemons to migrate processes

for the purposes of smoothing the load across multiple hosts.

MOSIX

MOSIX [BS85, BBNG

+

89, BSW89], also a UNIX derivative, uses a single paradigm to move

processes both between hosts and between processors within a multiprocessor. Intrahost

20 CHAPTER 2. BACKGROUND AND RELATED WORK

migration is performed because processors are not treated symmetrically: there is a single

master processor and a variable number of slave processors, each running a distinct kernel.

Any reference by a process to a kernel resource includes information about the kernel that

manages the resource; when necessary, system calls are forwarded from the processor on

which a process executes to the kernel controlling the resource.

MOSIX implements the \pool of processors" approach to load sharing, and process

migration is performed for the purpose of load balancing rather than host autonomy. Pro-

cessors in MOSIX share load information by trading load information with other processors

chosen at random. Load information is cached in a �xed-length vector, so each processor

has information about only a few other processors at any time. Each time new load infor-

mation is obtained, the kernel decides whether to migrate a process elsewhere to maintain

a balanced load. The MOSIX load balancing policy is fairly complex. For example, kernels

adjust the load they report in order to account for relative processor speeds and anticipated

uctuations in future loads. This helps to avoid migrating processes too often, and it is

necessary to cope with the sudden creation of many new processes on a processor.

2.4 Applications

With the recent wide-spread availability of multiprocessors and load sharing facilities, sev-

eral multi-process applications have developed. The most common application to make use

of load sharing in existing systems is a program to perform compilations in parallel. In

a typical UNIX system, parallel compilations are characterized by the execution of many

independent, short-running processes. As the availability of hosts changes over time, the

number of executing processes can change as well. Other parallel applications typically

involve long-running processes that cooperate to perform a single task. Some parallel appli-

cations that are well suited for execution on a multiprocessor are also suited for a distributed

system with transparent remote execution. Their ability to execute over a slower network

depends primarily on their requirements for interprocess communication. The next sections

consider existing applications that could take advantage of load sharing.

2.4.1 Parallel compilation

Make [Fel79] is a UNIX program that allows users to specify commands to bring �les up

to date and dependencies between �les. It is commonly used to recompile programs when

some of their source �les have changed, though it may be used for other purposes as well.

For compilations, each command typically takes several seconds to execute, though one

invocation of make might execute hundreds of commands. The standard make program

that is distributed with Berkeley and AT&T UNIX performs operations sequentially.

Several people have modi�ed or rewritten make to execute independent commands in

parallel, on multiprocessors and/or loosely-coupled hosts in a distributed system. Typi-

cally, parallel versions of make will execute as many commands simultaneously as there are

2.5. SUMMARY 21

processors available. If make checks periodically on the availability of processors, it can

increase or decrease its parallelism as the need arises.

The performance improvements from parallel make that have been reported vary con-

siderably. As reported by Fleckenstein and Hemmendinger, Encore has obtained linear

speedup using four processors in a shared-memory multiprocessor, with a speedup of 11

using 16 processors. Fleckenstein and Hemmendinger themselves implemented a parallel

make using Linda and NFS, obtaining a speedup of two to three using four hosts, with

minimal improvement beyond four hosts for their benchmark [FH89]. Baalbergen showed a

speedup of 3.5 to compile the same �le 4 times in parallel on separate Amoeba hosts [Baa86].

Roberts and Ellis have obtained speedups ranging from 6 to 12 using 15 machines, with the

limiting factor being disk tra�c to and from the controlling machine [RE87].

2.4.2 Distributed Applications

Barak, et al., converted several single-machine programs to take advantage of MOSIX's

dynamic load balancing by executing in parallel on a multiprocessor. They implemented

distributed versions of the traveling-salesman problem, several simulations, and image pro-

cessing tasks. The traveling-salesman problem obtained a speedup that was nearly linear

in the number of processors, while other applications showed less speedup due to commu-

nications overhead [BBNG

+

89]. (It is important to note, however, that these speedups

were obtained on shared-memory multiprocessors, and that comparable measurements on

a loosely-coupled distributed system might be a�ected more strongly by communication

costs.)

2.5 Summary

By distributing processes across multiple hosts, a system can substantially reduce the time

needed to execute a variety of programs. However, load sharing facilities need to address

several concerns beyond performance. My primary goals for process migration in Sprite have

been ease of use and preserving host autonomy. Most existing systems restrict the class

of processes that can execute on remote hosts, or do not provide the same environment to

remote processes as to local ones. Users may have to interact with remote processes using

special commands or interfaces. Only a few systems can move running processes in order to

reclaim hosts. In contrast, I wish to make a collection of workstations as easy and e�cient to

use as a single time-sharing system with many processors, while still guaranteeing individual

users the processing power of one workstation. The next chapter describes how this is done

in the Sprite operating system.

Chapter 3

Load Sharing in Sprite

3.1 Introduction

As the previous chapter shows, there are many di�erent ways to implement and use a load

sharing facility. For example, the goals of a load sharing facility for time-sharing computers

will likely be di�erent from the goals of one that runs on personal workstations. The

underlying operating system may di�er radically from one facility to another, a�ecting the

feasibility and complexity of transparent remote execution. A facility may be used for only

long-running noninteractive processes, such as Condor is [LLM88], or it may be intended

for a mixture of interactive and noninteractive processes with varying needs for resources.

The particular environment inuences the design of the facility, within the spectrum of

alternatives described in Chapter 2.

Section 3.2 describes the environment in which the research reported in this dissertation

has been conducted. It discusses the Sprite operating system and its implications for load

sharing. Section 3.3 presents the design of a transparent load sharing facility for Sprite

using process migration. Section 3.4 summarizes load sharing in Sprite.

3.2 Sprite

Sprite is an operating system for a collection of personal workstations and �le servers on

a local-area network [OCD

+

88]. Sprite's kernel-call interface is much like that of 4.3 BSD

UNIX [Com86], but Sprite's implementation is a new one that provides a high degree of

network integration. Each host runs a distinct copy of the Sprite kernel, but the kernels

work closely together using a remote-procedure-call (RPC) mechanism [Wel86] similar to

that described by Birrell and Nelson [BN84].

All the hosts on the network share a common high-performance �le system [Nel88,

Wel90]. Sprite permits the data of a �le to be cached in the memory of one or more

machines, with �le servers responsible for guaranteeing \consistent access" to the cached

22

3.2. SPRITE 23

data. A �le server keeps track of which hosts have a �le open for reading and writing. If

a �le is open on more than one host and at least one of them is writing it, then caching is

disabled: all hosts must forward their read and write requests for that �le to the server so

they can be serialized.

Because servers need to maintain state about all open �les in order to ensure consistent

caches, process migration and the �le system interact strongly. When a process changes

hosts, the servers that control access to its open �les must be noti�ed about its new location.

The change of host may cause a cached �le to become uncachable, or an uncached �le to

become cached. Chapter 5 discusses the interaction between the �le system and process

migration in detail.

Though the �le system is physically distributed, it is logically centralized because all

hosts share a single name space. The centralized �le system is used for virtual memory

paging and all interprocess communication (IPC). As I discuss in the next chapter, paging

via the �le system simpli�es migration because the functionality to demand-page a process

over the network already exists. Sprite's interprocess communication paradigm also sim-

pli�es migration considerably. Processes communicate using a special type of �le known

as a pseudo-device [WO88]. The migration of a process is transparent to the processes

with which it communicates, because only the operating system stores the location of the

processes that use the pseudo-device. Even communication using Internet (IP/UDP/TCP)

protocols over sockets is passed via a pseudo-device to and from a server process [Che87],

so Internet socket IPC does not pose any particular problem for migration.

3.2.1 Considerations for Migration Design

Several other aspects of the Sprite environment were particularly important in the design

of Sprite's process migration facility:

Idle hosts are plentiful. Since our environment consists primarily of personal machines,

it seemed likely to us that many machines would be idle at any given time. This belief

was supported by the studies reported in Section 2.1; later, my own measurements

(given in Chapter 8) showed 65{80% of all workstations are idle on average, even dur-

ing weekdays. The availability of many idle machines suggests that simple algorithms

can be used for selecting where to migrate: there is no need to make complex choices

among partially-loaded machines.

Users \own" their workstations. Prior to designing the Sprite process migration facil-

ity, I surveyed our potential user community about their reaction to sharing processor

cycles, both in UNIX and eventually in Sprite. Though people favored the opportu-

nity to improve performance, the bias toward \ownership" of workstations was clear:

they were unwilling to permit other users' processes on their machines while they

were active, even if the processes would run at low priority or for only a short time,

because the foreign processes would compete with their processes for resources such

24 CHAPTER 3. LOAD SHARING IN SPRITE

as physical memory. This suggested that a machine should only be used as a target

for migration if it is known to be idle, and that foreign processes should be evicted if

the user returns before they �nish.

Most programs are short-lived. In a UNIX environment, most of the programs that

users invoke interactively execute for short periods of time, while a small number of

processes execute for long periods. For example, Zhou traced a VAX-11/780 4.3 BSD

UNIX system and found that the mean process execution time was 1.5 seconds with

a standard deviation of 19.1 seconds [Zho87]. We presumed that the same pattern

would hold in Sprite. Under this assumption, migrating active processes will provide

signi�cant performance improvements only if the overhead of migration is extremely

low (a few hundred milliseconds at most) or migration is limited to processes that are

known to be long-running.

Sprite uses kernel calls. As noted in Section 2.3.3, most other implementations of pro-

cess migration are in message-passing systems, in which transparency is provided

primarily by redirecting communication. Sprite processes perform protected proce-

dure calls into the kernel on the host on which they execute. To provide location

transparency, the kernels must cooperate by explicitly forwarding calls between hosts,

rather than by simply redirecting message channels.

Sprite already provides network support. I was able to capitalize on existing mech-

anisms in Sprite to simplify the implementation of process migration. For example,

Sprite already provided remote access to �les and devices, and it has a single network-

wide space of process identi�ers. These features and others made it much easier to

provide transparency in the migration mechanism. In addition, process migration uses

the same kernel-to-kernel remote procedure call facility that is used for the network

�le system and many other purposes. On SPARCstation 1 workstations (roughly 10

MIPS) running on a 10 megabits/second Ethernet, the minimum round-trip latency

of a remote procedure call is about 1.6 milliseconds and the throughput is 480-660

Kbytes/second. Much of the e�ciency of the Sprite migration mechanism can be

attributed to the e�ciency of the underlying RPC mechanism.

3.3 Load Sharing Design

Two conicting goals motivated the design of Sprite's load sharing facility. On the one hand,

we wanted transparency: Sprite should present the illusion of a single fast time-sharing

system, rather than a distributed system with many independent hosts. A user performing

a large parallel compilation on one workstation should not be aware that processes are being

executed on many machines at once, only that many processes are executing. On the other

hand, we needed autonomy: we were unwilling to give all users equal access to all resources

the way a time-sharing system would. The need for users to have \eminent domain" over

their workstations was compelling. We wished to use workstations for load sharing only

3.3. LOAD SHARING DESIGN 25

when they were idle, and to have a way to reclaim workstations automatically when they

were no longer idle. Furthermore, when a workstation is reclaimed by its owner, it should

not have to dedicate any resources to processes that had been running on it; i.e., after

eviction, a migrated process should have no residual dependencies on the host that evicted

it.

Section 3.3.1 describes our approach to transparent process migration, which we viewed

as a way to address both of these goals. Section 3.3.2 presents an overview of Sprite's load

sharing policy. Both of these subjects are discussed in detail in subsequent chapters.

3.3.1 Transparent Process Migration

Sprite presents the illusion of a time-sharing system by making a process appear to execute

in a single location throughout its lifetime. That location is referred to as the home machine

of the process; it is the machine where the process would have executed if there had been

no migration at all. A remote process (one that has been migrated to a machine other

than its home) has exactly the same access to virtual memory, �les, devices, and nearly

all other system resources that it would have if it were executing on its home machine.

Furthermore, the process appears to users as if it were still executing on its home machine:

its process identi�er does not change, it appears in process listings on the home machine,

and it may be stopped, restarted, and killed just like local processes. In the next chapter,

Section 4.3 describes in detail how transparent remote execution is supported in the kernel,

and Section 4.4 describes how Sprite eliminates residual dependencies when processes are

evicted.

3.3.2 Policy

In Sprite, kernels implement the process migration mechanism while user-level applications

implement the load sharing policy. User-level support takes four forms: idle-host selection,

eviction, the pmake program, and a mig shell command.

Selecting Idle Hosts. Each Sprite machine runs a background process called the load-

average daemon, which monitors the usage of that machine. When the workstation

appears to be idle, the load-average daemon noti�es the rest of the system that the

machine is ready to accept migrated processes. Processes that wish to use idle hosts

obtain the hosts via a library call and return the hosts to the pool of idle hosts

upon completion. This \check-in/check-out" procedure avoids instabilities that might

result from multiple processes simultaneously migrating to the same host. Alternative

solutions are discussed in Chapter 6.

Eviction. The load-average daemons detect when a user returns. On the �rst keystroke

or mouse-motion invoked by the user, the load-average daemon will check for foreign

26 CHAPTER 3. LOAD SHARING IN SPRITE

processes and evict them.

1

Processes return to their home machine, and can be

remigrated from there if another host is available.

Pmake. The most common use of process migration is by the pmake program, which is

similar to the parallel-compilation programs described in Section 2.4.1. Pmake uses

process migration to invoke as many commands in parallel as there are processors

available, either locally or on idle hosts. It also handles evictions by remigrating

evicted processes or temporarily suspending them until a new host is available.

Mig. The mig program will select an idle machine using the mechanism described above

and use process migration to execute a speci�ed command on that machine. Mig may

also be used to migrate an existing process.

3.4 Summary

The design of Sprite's load sharing facility was inuenced by several factors: our workstation

environment, typical applications that use Sprite, and Sprite's underlying implementation.

The workstation environment implied the need for autonomy as well as the opportunity for a

simple approach to host selection, due to the wide availability of idle hosts. Sprite's network-

transparent kernel permitted me to implement a simple process migration mechanism with

full transparency.

Transparency in Sprite is de�ned with respect to the home machine of a process. A

process appears to execute on its home machine throughout its lifetime, and its behavior is

unchanged in the presence of migration. It has residual dependencies on its home machine

if it executes elsewhere, since the home machine is responsible for knowing the process's

location, but after eviction a process has no residual dependencies on the host from which

it is evicted.

Load sharing in Sprite is used primarily by pmake, and occasionally by mig . Remote

invocation is performed automatically by those applications, while migration is normally

performed only when processes are evicted. A load-average daemon on each host is respon-

sible for advertising the host's availability and for evicting foreign processes when the host

is reclaimed.

1

Note that there is no special support to evict processes when a host is used by someone not physically

located with it. Someone who logs into a workstation remotely, or over a phone line, may have to compete

with foreign processes for resources. We consciously chose to distinguish between physical and remote access,

because users tend to notice any performance degradation of window-based interactive applications more

than applications run remotely. Of course, the same mechanisms used to detect local interactive input could

be extended to evict processes when a user interacts with a host remotely, if that were desired.

Chapter 4

Process Migration Mechanism

4.1 Introduction

In general, migrating a process involves two phases. The �rst phase consists of extracting

the process state from one host (the source) and installing it on another host (the target).

The second phase begins when the system starts executing the process on the target, and

ends when the process terminates or migrates elsewhere. These two phases interact, because

the actions the system performs during the �rst phase a�ect what special operations are

necessary during the second.

The �rst phase, process transfer, depends on the state associated with a process. Sec-

tion 4.2 examines di�erent types of process state in a distributed system. It also examines

ways to manage that state when a process changes hosts: transferring state, forwarding op-

erations, or sacri�cing transparency. Finally, it describes the step-by-step procedure used

to migrate a process in Sprite.

The second phase, process execution, depends not only on the way in which state is

transferred, but also the degree to which migration is intended to be transparent. For some

operations, a system can trade o� the simplicity of forwarding operations against the cost

of inter-host communication; for others, the host on which a process executes is the only

possible provider of a resource. In Section 4.3, I describe how Sprite uses the home machine

to provide transparency for a remote process: the home machine manages the few kernel

calls that are location-dependent, and it forwards operations on the process, such as signals,

to the kernel on the remote host.

Section 4.4 discusses the relationship between process migration and residual dependen-

cies, which require a process on one host to receive services from another host on which it

previously executed. As I discussed above in Section 2.2, residual dependencies are gener-

ally bad for both reliability and performance, though some exceptions exist. Since in Sprite

we place workstation autonomy above any considerations of migration performance, Sprite

leaves no residual dependencies after eviction. However, Sprite does have dependencies on

27

28 CHAPTER 4. PROCESS MIGRATION MECHANISM

the home machine to support transparency.

Finally, Section 4.5 summarizes the chapter.

4.2 Process Transfer

The techniques used to migrate a process depend on the state associated with the process

being migrated. If a stateless process existed, then migrating such a process would be

trivial. In reality processes have large amounts of state, and both the amount and variety

of state seem to be increasing as operating systems evolve. The more variety of state, the

more complex the migration mechanism is likely to be. Process state typically includes the

following:

� Virtual memory. In terms of size, the greatest amount of state associated with a

process is likely to be the memory that it accesses. Thus the time to migrate a process

is often limited by the speed of transferring virtual memory.

� Open �les. If the process is manipulating �les or devices, then there will be state

associated with these open channels, both in the virtual memory of the process and

also in the operating system kernel's memory. The state for an open �le includes

the internal identi�er for the �le, the current access position, and possibly cached �le

blocks. The cached �le blocks may represent a substantial amount of storage, in some

cases greater than the process's virtual memory.

� Message channels. In a message-based operating system such as Mach [ABB

+

86]

or V [Che88], state of this form would exist in place of open �les. (In such a system

message channels would be used to access �les, whereas in Sprite, �le-like channels are

used for interprocess communication.) The state associated with a message channel

includes bu�ered messages plus information about senders and receivers.

� Execution state. This consists of information that the kernel saves and restores

during a context switch, such as register values and condition codes.

� Other kernel state. Operating systems typically store other data associated with a

process, such as the process's identi�er, a user identi�er, a current working directory,

signal masks and handlers, resource usage information, references to the process's

parent and children, and so on.

For each portion of the state associated with a process, the system must do one of three

things during migration: transfer the state, arrange for forwarding, or use comparable

state on the target and sacri�ce transparency. To transfer a piece of state, it must be

extracted from its environment on the source machine, transmitted to the target machine,

and reinstated in the process's new environment on that machine. For state that is private

to the process, such as its execution state, transfer is relatively straightforward. Other

4.2. PROCESS TRANSFER 29

state, such as kernel state distributed among complex data structures (possibly on multiple

hosts), may be much more di�cult to extract and reinstate. An example of \di�cult" state

in Sprite is information about open �les, particularly those being accessed on remote �le

servers. Lastly, some state may be impossible to transfer. Such state is usually associated

with physical devices on the source machine. For example, the frame bu�er associated with

a display must remain on the machine containing the display; if a process with access to

the frame bu�er migrates, it will not be possible to transfer the frame bu�er.

The second option for each piece of state is to arrange for forwarding. Rather than

transfer the state to stay with the process, the system may leave the state where it is and

forward operations back and forth between the source and target machines. For example,

I/O devices cannot be transferred, but the operating system can arrange for output requests

to be passed back from the process to the device, and for input data to be forwarded

from the device's machine to the process. In the case of message channels, arranging for

forwarding might consist of changing sender and receiver addresses so that messages to and

from the channel can �nd their way from and to the process. Ideally, forwarding should be

implemented transparently, so that it is not obvious outside the operating system whether

the state was transferred or forwarding was arranged.

The third option, sacri�cing transparency, is a last resort: if neither state transfer nor

forwarding is feasible, then one can ignore the state on the process's current and simply use

the corresponding state on the target after migration. The only situation in Sprite where

neither state transfer nor forwarding seemed reasonable is for memory-mapped I/O devices

such as frame bu�ers, as alluded to above. We decided to disallow migration for processes

using these devices.

In a few rare cases, lack of transparency may be desirable. For example, a process

that requests the amount of physical memory available should obtain information about

its current host rather than its home machine. For Sprite, a few special-purpose kernel

calls (e.g., calls that read instrumentation counters in the kernel) are also intentionally

non-transparent with respect to migration. In general, though, it would be unfortunate if

a process behaved di�erently after migration than before.

The subsections below describe how Sprite deals with the various components of process

state during migration. The solution for each component consists of some combination of

transferring state and arranging for forwarding.

4.2.1 Virtual Memory Transfer

Virtual memory transfer is the aspect of migration that has been discussed the most in the

literature, perhaps because it is believed to be the limiting factor in the speed of migra-

tion [Zay87b]. One simple method for transferring virtual memory is to send the process's

entire memory image to the target machine at migration time, as in Charlotte [AF89] and

LOCUS [PW85]. This approach is simple but it has two disadvantages. First, the transfer

can take many seconds, even using the highest transfer rate allowed by the network. During

30 CHAPTER 4. PROCESS MIGRATION MECHANISM

this time the process is frozen: it cannot execute on either the source or destination machine.

For some processes, particularly interactive ones, long freeze times may be unacceptable.

The second disadvantage of a monolithic virtual memory transfer is that it may result in

wasted work for portions of the virtual memory that are not used by the process after it

migrates. The extra work is particularly unfortunate (and costly) if it requires old pages

to be read from secondary storage. For these reasons, several other approaches have been

used to reduce the overhead of virtual memory transfer; the mechanisms are illustrated in

Figure 4.1 and described in the paragraphs below.

In Section 2.3.3, I described techniques that two other systems, V and Accent, used

to address the cost of copying memory. To summarize, the V System allows a process

to continue executing on the source host while its address space is transferred to the tar-

get [The86, TLC85], while Accent transfers a process and retrieves its memory image as

the memory is referenced [Zay87a, Zay87b]. In V, pre-copying reduces freeze times sub-

stantially, but the need to copy pages multiple times can increase the total amount of work

to migrate a process. In Accent, lazy copying permits a process to begin execution on the

target with minimal freeze time, and it reduces the cost of migration because pages that

are not used are never copied at all. However, lazy copying leaves residual dependencies

on the source machine: the source must store the unreferenced pages and provide them on

demand to the target. In the worst case, a process that migrates several times could leave

virtual memory dependencies on any or all of the hosts on which it ever executed.

Sprite's migration facility uses a di�erent form of virtual memory transfer that takes

advantage of our existing network services while providing some of the advantages of lazy

copying. In Sprite, backing storage for virtual memory is implemented using ordinary �les.

Since these backing �les are stored in the network �le system, they are accessible throughout

the network. During migration the source machine freezes the process, ushes its dirty pages

to backing �les, and discards its address space. On the target machine, the process starts

executing with no resident pages and uses the standard paging mechanisms to load pages

from the backing �les as they are needed.

In most cases no disk operations are required to ush dirty pages in Sprite. The backing

�les are stored on network �le servers, which cache recently-used �le data in memory.

When the source machine ushes a dirty page it is simply transferred over the network

to the server's main-memory �le cache. If the target machine accesses the page then it is

retrieved from the cache. Disk operations will occur only if the server's cache overows.

Sprite's virtual memory transfer mechanism was simple to implement because it uses

pre-existing mechanisms both for ushing dirty pages on the source and for handling page

faults on the target. It has some of the bene�ts of the Accent lazy-copying approach since

only dirty pages incur overhead at migration time; other pages are sent to the target machine

when they are referenced. The Sprite approach will require more total work than Accent's,

though, since dirty pages may be transferred over the network twice: once to a �le server

during ushing, and once later to the destination machine.

The Sprite approach to virtual memory transfer �ts well with the way migration is

4.2. PROCESS TRANSFER 31

time

VM Transfer Techniques

source

target

(a) LOCUS, Charlotte

target

source

(c) Accent

source

target

(b) V

 residual dependencies end

 transfer virtual memory

 process executes

source

target

(d) Sprite

file server

Figure 4.1: Di�erent techniques for transferring virtual memory. (a) shows the scheme used in

LOCUS and Charlotte, where the entire address space is copied at the time a process migrates. (b)

shows the pre-copying scheme used in V, where the virtual memory is transferred during migration

but the process continues to execute during most of the transfer. (c) shows Accent's lazy-copying

approach, where pages are retrieved from the source machine as they are referenced on the target.

Residual dependencies in Accent can last for the life of the migrated process. (d) shows Sprite's

approach, where dirty pages are ushed to a �le server during migration and the target retrieves

pages from the �le server as they are referenced. In the case of eviction, there are no residual

dependencies on the source after migration. When a process migrates away from its home machine,

it has residual dependencies on its home throughout its lifetime.

32 CHAPTER 4. PROCESS MIGRATION MECHANISM

typically used in Sprite. Process migration occurs most often during an exec system call,

which completely replaces the process's address space. If migration occurs during an exec,

the new address space is created on the destination machine so there is no virtual memory

to transfer. As others have observed (e.g., LOCUS [PW85]), the performance of virtual

memory transfer for exec-time migration is not an issue. Virtual memory transfer is an

issue, however, when migration is used to evict a process from a machine whose user has

returned. In this situation the most important consideration is to remove the process

from its source machine quickly, in order to minimize any performance degradation for the

returning user. Sprite's approach works well in this regard since (a) it does the least possible

work to free up the source's memory, and (b) the source need not retain pages or respond

to later paging requests as in Accent. It would have been more e�cient overall to transfer

the dirty pages directly to the target machine instead of a �le server, but this approach

would have added complexity to the migration mechanism.

Virtual memory transfer becomes much more complicated if the process to be migrated

is sharing writable virtual memory with some other process on the source machine. In

principle, it is possible to maintain the shared virtual memory even after one of the sharing

processes migrates [LH89], but this changes the cost of shared accesses so dramatically that

it seemed unreasonable. Currently, shared writable virtual memory almost never occurs

in Sprite, so Sprite simply disallows migration for processes using it. A better long-term

solution would be to migrate all the sharing processes together, but even this may be

impractical if there are complex patterns of sharing that involve many processes.

4.2.2 Migrating Open Files

When a process migrates, it must have uninterrupted access to any �les it has opened.

Either the state associated with each �le must be transferred to the target, or operations on

the �le must be forwarded to the machine on which the �le was opened. As I shall demon-

strate in Chapter 5, the migration mechanism would be much simpler with the \arrange for

forwarding" approach for open �les than with the \transfer state" approach. However, the

frequency of �le-related kernel calls and the cost of forwarding a kernel call over the network

make the forwarding approach unacceptable. Forwarding �le-related calls would slow down

the remote process and load the machine that stores the �le state. Sprite workstations

are typically diskless and �les are accessed remotely from �le servers, so the forwarding

approach would cause each �le request to be sent over the network once to the machine

where the �le was opened, and probably a second time to the server. From a performance

standpoint, it would be desirable to transfer open-�le state along with a migrating process

and then use the normal mechanisms to access the �le (i.e., communicate directly with the

�le's server).

Because the performance considerations outweighed any concerns about increased com-

plexity, Sprite uses the \transfer state" approach for open �les. Once an open �le has been

transferred to a new host, access to the �le is managed using standard mechanisms in the

Sprite �le system. The server that stores a �le (or controls a device) is responsible for keep-

4.2. PROCESS TRANSFER 33

ing two things consistent: the �le's contents, and processes' o�sets into the �le. If processes

on di�erent hosts access the same �le simultaneously, and a process has the �le open for

writing, the Sprite cache consistency protocol causes the �le to become uncacheable on all

hosts except the server that stores the �le. This policy prevents hosts from storing inconsis-

tent images of the �le in their caches. Also, if migration causes processes on di�erent hosts

to share a single �le descriptor, the o�set into the �le is managed by the �le's server, and

all operations using the �le descriptor are forwarded to the server.

Transferring open-�le state provides high performance at the cost of considerable in-

creased complexity; in fact, bookkeeping between �le servers and migrating processes on

client workstations is the most complicated aspect of the Sprite process migration facility.

Locking and updating the data structures for an open �le simultaneously on multiple hosts

provides numerous opportunities for deadlocks, race conditions, and inconsistent reference

counts. The next chapter discusses in depth the interaction between process migration and

the �le system.

4.2.3 The Process Control Block

Aside from virtual memory and open �les, the main remaining issue is how to deal with

the process control block (PCB) for the migrating process: should it be left on the source

machine or transferred with the migrating process? In Sprite I use a combination of both

approaches. The home machine for a process must assist in some operations on the process

(see Section 4.3 for details), so it always maintains a PCB for the process. In addition, the

current machine for a process also has a PCB for it. If a process is migrated, then most of

the information about the process is kept in the PCB on its current machine; the PCB on

the home machine serves primarily to locate the process and most of its �elds are unused.

The other elements of process state besides virtual memory and open �les are much

easier to transfer than virtual memory and open �les, since they are not as \bulky" as

virtual memory and they don't involve distributed state like open �les. At present the

other state consists almost entirely of �elds from the process control block, such as signal

masks, process groups, and identi�ers. In general, all that needs to be done is to transfer

these �elds to the target machine and reinstate them in the process control block on the

target.

4.2.4 The Fragility Problem

One problem with process migration is that it involves state that is manipulated by virtually

every major module in the kernel. This makes it hard to separate the implementation of

migration from the implementation of the other kernel modules, since changes in one can

a�ect the other. As a result, migration has been one of the most fragile parts of the Sprite

kernel. It often breaks when seemingly unrelated parts of the kernel are modi�ed. I believe

that the problem is inherent in the nature of migration (Theimer had similar problems in

his implementation [The86]), but I have used two techniques to lessen the di�culties.

34 CHAPTER 4. PROCESS MIGRATION MECHANISM

My �rst approach to the problem of migration fragility was to introduce migration

version numbers . Before Sprite started using migration version numbers it was very di�cult

to make any changes to the migration mechanism, or to kernel data structures a�ected by

migration. As the kernel changed, some machines would be running new kernels and some

would run older kernels, without the changes. When an attempt was made to migrate

between new and old kernels, the result was inevitably a crash of one or both machines.

The only way to prevent these crashes was to reboot every Sprite host whenever anyone

made an incompatible change. To catch incompatibilities, Sprite kernels now include a

\migration version number," which is incremented whenever any aspect of the migration

protocol changes. Migration is disallowed between machines with di�erent version numbers,

so that incompatible versions can coexist in the same network.

My second approach was to avoid centralizing the migration code in one place. Instead,

I have distributed it among the various kernel modules whose state is a�ected. By placing

the migration-related code next to the other code that manipulates state information, I

have found it easier to keep the two consistent. For each piece of state that must be

considered during migration there exist four procedures that are invoked during migration

(see Section 4.2.5 for details). All that is needed to deal with additional state during

migration is to write the four procedures for that state and enter their names into a table

used during migration. At present the table contains entries for the following pieces of

state: basic machine-independent process state, machine-dependent execution state, virtual

memory, �les, signals, pro�ling, and arguments to exec.

4.2.5 Migration Procedure

The overall algorithm for migrating a process from a source machine to a target machine is

table-driven and involves the following steps:

1. The process is signaled to make it trap into the kernel. (At the point when the signal

is handled, the state of the process within the kernel is simple and well-de�ned, since

the process is not in the midst of a kernel call.)

2. If the process is not being migrated back to its home machine, the source kernel

contacts the target to con�rm that it is running, that it is available for migration,

and that it has the same migration version number as the source. The kernel on the

target host allocates a new process control block and returns a token that is later used

to identify the new instance of the process on the target. If the process is migrating

home, then the three conditions are all known to be satis�ed, and no preliminary

communication is necessary. In that case, the token for the process is simply its

process identi�er on the home machine.

3. For each module with process state that must be transferred to the new host, the

source kernel calls a pre-migration routine to obtain the size of the encapsulated data.

This routine may, as a side e�ect, initiate any actions required to migrate state:

4.3. SUPPORTING TRANSPARENCY: HOME MACHINES 35

for example, the virtual memory pre-migration routine queues the process's modi�ed

pages for ushing.

4. The source kernel allocates a bu�er to hold the combined encapsulated state. This

bu�er varies in size primarily as a function of the size of the process's page tables; for

a small process, a typical size for this bu�er would be about 5 Kbytes.

5. For each module, the source kernel calls an encapsulation routine to place that mod-

ule's state into a portion of the bu�er. As with the pre-migration routines, encapsu-

lation routines may have side e�ects, such as waiting for modi�ed pages to be ushed

or communicating with �le servers for open �les.

6. The source kernel passes the encapsulated state to the target kernel via a single remote

procedure call. On the target, the corresponding de-encapsulation routine is invoked

for each portion of the bu�er.

7. For each module, if a post-migration routine has been speci�ed, the kernel on the

source host invokes the procedure to clean up any remaining state.

8. The source kernel frees the bu�er and informs the target to resume the process.

4.3 Supporting Transparency: Home Machines

As I discussed in Section 1.1, transparency was one of my most important goals in imple-

menting migration. By \transparency" I mean two things in particular. First, a process's

behavior should not be a�ected by migration. Its execution environment should appear

the same, it should have the same access to system resources such as �les and devices, and

it should produce exactly the same results as if it hadn't migrated. Second, a process's

appearance to the rest of the world should not be a�ected by migration. To the rest of

the world the process should appear as if it never left its original machine, and any opera-

tion that is possible on an unmigrated process (such as stopping, debugging, or signalling)

should be possible on a migrated process.

Both of these two aspects of transparency are de�ned with respect to a process's home

machine, which is the machine where it would execute if there were no migration at all.

Even after migration, everything should appear as if the process were still executing on its

home machine. As will be seen below, Sprite achieves transparency by involving the home

machine in some operations for remote processes.

4.3.1 Messages Versus Kernel Calls

On the surface, it might appear that transparency is particularly easy to achieve in a

message-based system like Accent [Zay87b], Charlotte [AF89], or V [Che88]. In these sys-

tems all of a process's interactions with the rest of the world occur in a uniform fashion

36 CHAPTER 4. PROCESS MIGRATION MECHANISM

through message channels. All that is needed to guarantee transparency is to preserve the

behavior of the message channels by forwarding messages to and from a remote process's

new location. This is typically done by updating addresses in the endpoints of the message

channels. For example, Charlotte updates the addresses at the time of migration, while V

waits until the old incorrect address is used and then updates the address using a multicast

protocol.

In contrast, transparency might seem harder to achieve in a system like Sprite that is

based on kernel calls. In such a system the state of the process is expected to be in the

kernel of the machine where the process executes. This requires that the state be transferred

during migration, which is more complicated than forwarding.

It turns out that neither of these initial impressions is correct. For example, it would

be possible to implement forwarding in a kernel-call-based system by leaving all of the

kernel state on the home machine and using remote procedure calls to forward home every

kernel call, as Remote UNIX [Lit87] does. This would result in an approach very similar to

forwarding messages, and our initial plan was to use an approach like this for Sprite.

Unfortunately, an approach based entirely on forwarding kernel calls or forwarding mes-

sages will not work in practice, for two reasons. The �rst problem is that some services

must necessarily be provided on the machine where a process is executing. If a process

invokes a kernel call to allocate virtual memory (or if it sends a message to a memory

server to allocate virtual memory), the request must be processed by the kernel or server

on the machine where the process executes, since only that kernel or server has control

over the machine's page tables. Forwarding is not a viable option for such machine-speci�c

functions: state for these operations must be migrated with processes. The second problem

with forwarding is cost. It will often be much more expensive to forward an operation to

some other machine than to process it locally. If a service is available locally on a remote

process's new machine, it will be more e�cient to use the local service than to forward

operations back to the service on the process's old machine. Furthermore, forwarded calls

increase the load on the old machine, so the less forwarding is needed the more parallelism

is possible.

4.3.2 Achieving Transparency

Transparency is achieved in practice by combining several approaches. I used four di�er-

ent techniques in Sprite. The most desirable approach is to make kernel calls location-

independent; Sprite has been gradually evolving in this direction. For example, in early

versions of the system we permitted di�erent machines to have di�erent views of the �le

system name space. This improved the generality of the system but required open and sev-

eral other kernel calls to be forwarded home after migration, imposing about a 20% penalty

on the performance of remote compilations. In order to simplify migration (and for several

other good reasons), we changed the �le system so that every machine in the network sees

the same name space. This made the open kernel call location-independent, so no extra

e�ort was necessary to make open work transparently for remote processes.

4.3. SUPPORTING TRANSPARENCY: HOME MACHINES 37

Another example of the evolution toward transparency is the kill kernel call, which sends

a signal to a process. Sprite has a single network-wide name space for process identi�ers,

and we made kill work regardless of whether the process being signalled was on the same

machine as the process issuing the kernel call; this allowed kill to be used transparently by

remote processes.

The second technique is to transfer state from the source machine to the target at

migration time, so that normal kernel calls may be used after migration. For example,

a process's virtual memory is transferred at migration time so that the kernel's virtual-

memory-related state for a remote process is identical to an unmigrated process's state.

This allows Sprite to use the normal virtual-memory-related kernel calls for remote processes

without any loss of transparency. Sprite also uses the state-transfer approach for open �les,

process and user identi�ers, resource usage statistics, and a variety of other things.

Note that from an implementation standpoint, the �rst two techniques are quite similar.

In either case, a kernel call is handled entirely by the kernel of the host on which a process

executes, without any special considerations due to the process being associated with a

di�erent host. The techniques di�er only to the extent that state must be transferred with

a process to enable calls to be handled on the remote host. In fact, the two techniques

overlap to some extent: the open kernel call is location-independent, but in order to allow

the remote host to handle the open call without forwarding it home, the process's current

working directory must be transferred at migration time.

The third technique is to forward kernel calls home. In almost all cases, forwarding calls

can be done without any special interpretation by the remote kernel. Instead, the kernel

encapsulates the arguments to the kernel call, transfers the arguments to the process's home

machine with an indication of which call is to be performed, and returns the results to the

user process. This technique was originally used for a large number of kernel calls, but for

reasons of performance and complexity I have gradually replaced most uses of forwarding

with transparency or state transfer. At present there are only a few kernel calls that

cannot be implemented transparently and for which we cannot easily transfer state. The

most important such kernel call is gettimeofday , which returns the current time. Clocks

are not synchronized between Sprite machines, so for remote processes Sprite forwards the

gettimeofday kernel call back to the home machine. This guarantees that time advances

monotonically even for remote processes, but incurs a performance penalty for processes

that read the time frequently. Despite the performance penalty, however, forwarding calls

is a simple solution to a wide range of problems, and several other systems forward calls

automatically in some or all cases. For example, Plan 9 [PPTT90] forwards gettimeofday

calls from processor servers to a user's own machine in order to keep times consistent

across hosts, and MOSIX [BS85] and Remote UNIX [Lit87] forward calls as described in

Section 2.3.

Forwarding also occurs from the home machine to a remote process's current machine.

For example, when a process is signalled (i.e., when some other process speci�es its identi�er

in the kill kernel call), the signal operation is sent initially to the process's home machine.

38 CHAPTER 4. PROCESS MIGRATION MECHANISM

If the process is not executing on the home machine, then the home machine forwards the

operation on to the process's current machine. The performance of such operations could

be optimized by retaining a cache on each machine of recently used process identi�ers and

their last known execution sites. This approach is used in LOCUS and V and allows many

operations to be sent directly to a remote process without passing through another host.

An incorrect execution site is detected the next time it is used and correct information is

found by sending a message to the host on which the process was created (LOCUS) or by

multicasting (V).

The fourth \approach" is really just a set of ad hoc techniques for a few kernel calls that

must update state on both a process's current execution site and its home machine. One ex-

ample of such a kernel call is fork , which creates a new process. Process identi�ers in Sprite

consist of a home machine identi�er and an index of a process within that machine. Man-

agement of process identi�ers, including allocation and deallocation, is the responsibility of

the home machines named in the identi�ers. If a remote process forks, the child process

must have the same home machine as the parent, which requires that the home machine

allocate the new process identi�er. Furthermore, the home machine must initialize its own

copy of the process control block for the process, as described in Section 4.2.3. Thus, even

though the child process will execute remotely on the same machine as its parent, both its

current machine and its home machine must update state. The ow of control is essentially

identical to a fork call by a local process, with an additional RPC at one point to inform

the home machine about the child process.

Similar kinds of cooperation occur for exit , which is invoked by a process to terminate

itself, and wait , which is used by a parent to wait for one of its children to terminate. The

wait call is a special case, because it involves both state retrieval and state update. When a

remote process waits for a child to exit, the kernel on the remote host contacts the process's

home machine to obtain information about an exiting child; if no child has exited, then

the kernel on the home machine notes the parent's interest and contacts the remote host

when a child exits later. Using the home machine to maintain the state for the wait-exit

rendezvous point has permitted Sprite to avoid several potential race conditions between

a process exiting, its parent waiting for it to exit, and one or both processes migrating.

LOCUS similarly uses the site on which a process is created to synchronize operations on

the process.

The disposition of each kernel call is listed in Appendix A on page 109. Currently, 11

out of 106 system calls are encapsulated and \forwarded blindly" to the home machine, and

4 calls are performed via cooperation between the kernels of both machines. The remaining

91 calls are handled by the remote host using the normal system call interface, with no

special actions by the home machine. Figure 4.2 depicts the alternative paths that kernel

calls by foreign processes can follow.

4.3. SUPPORTING TRANSPARENCY: HOME MACHINES 39

Process traps into kernel

?

depending on kernel call
dispatched to routine

handle locally

Forward
Home?

obtain data; possibly update
local state Forward

Home?

no state update
wait()

update state on
home machine

obtain data from
home machine

no

no

no

yes

yes

yes

1
2

3

encapsulate arguments
and forward home

‘‘blindly’’

Figure 4.2: Transparent management of kernel calls by a foreign process. When a process calls

into the kernel on a host that is not its home machine, the kernel handles the call in one of three

ways. (1) Most commonly, kernel calls are handled locally without any need to involve the home

machine. These calls follow the path indicated by the shaded ovals. (2) In some cases, such as

gettimeofday , calls are forwarded home with no interpretation by the remote host. (3) Finally, in

a few cases such as fork and wait , calls are handled locally initially but at some point involve the

home machine to update state or obtain data.

40 CHAPTER 4. PROCESS MIGRATION MECHANISM

4.4 Residual Dependencies

I have de�ned a residual dependency as a dependency of a process on a host after the

process migrates away from the host. One example of a residual dependency occurs in

Accent, where a process's virtual memory pages are left on the source machine until they

are referenced on the target. Another example occurs in Sprite, where the home machine

must participate whenever a remote process forks or exits.

Despite the disadvantages of residual dependencies, mentioned previously, it may be

impractical to eliminate them all. In some cases dependencies are inherent, such as when

a process is using a device on a speci�c host; these dependencies cannot be eliminated

without changing the behavior of the process. In other cases, dependencies are necessary

or convenient to maintain transparency: for example, in Sprite the home machine serves

as a rendezvous point for information about exiting processes that may have executed on

di�erent hosts. Lastly, residual dependencies may actually improve performance in some

cases, such as lazy copying in Accent, by deferring state transfer until it is absolutely

necessary.

With respect to residual dependencies, Sprite distinguishes between dependencies on

the home machine and dependencies after eviction. Because I believed transparency would

require certain dependencies on the home machine (for example, migrated processes ap-

pearing in a list of active processes on a user's own machine), I permitted some residual

dependencies on the home machine where those dependencies made it easier to implement

transparency. As described in Section 4.3.2 above, there are only a few situations where

the home machine must participate, so the performance impact is minimal (see Chapter 7

for measurements). However, these dependencies prevent users from migrating processes in

order to survive the failure of their home machine. In Chapter 9 I consider a nontransparent

variant of process migration, which would change the home machine of a process when it

migrates and break all dependencies on its previous host. Nontransparent process migration

might be appropriate in cases where reliability is more important than transparency. For

example, long-running noninteractive applications might make no reference to their location

or the time of day, and the failure of the home machine would cause signi�cant amounts of

processing to be lost if a remote process were terminated.

Although Sprite permits residual dependencies on the home machine, it does not leave

dependencies on any other machines. If a process migrates to a machine and is then evicted

or migrates away for any other reason, there will be no residual dependencies on that

machine. This provides yet another assurance that process migration will not impact users'

response when they return to their workstations. The only noticeable long-term e�ect

of foreign processes is the resources they may have utilized during their execution: in

particular, the user's virtual memory working set may have to be demand-paged back into

memory upon the user's return.

4.5. SUMMARY 41

4.5 Summary

When a process migrates, its execution environment must continue to be accessible to it.

Much of its state must reside on the host on which the process executes, while other pieces

of its environment can be accessed from its former host. For each piece of state associated

with a process, the system can move the state with the process at the time of migration, or

arrange to forward the state when it is needed.

If state must be forwarded, then the process has a residual dependency on the host that

performs the forwarding. Such a dependency may increase the likelihood of process failure:

if the host with the dependency fails, then the process may be unable to access resources.

The dependency also may degrade the performance of the host providing the resource|if,

for example, the resource is virtual memory. On the other hand, some dependencies are

unavoidable if migration is to be transparent, and the same dependencies that degrade

performance during execution can reduce the time needed to migrate a process.

Implementing migration is complicated, and insulating migration from the rest of the

kernel is especially di�cult. The more modular migration is, the easier it is to make process

migration work in the presence of changes elsewhere in the system. In Sprite, the interaction

between the �le system and process migration is the most complex aspect of migration. The

next chapter discusses this interaction, in the context of distributed systems in general and

Sprite in particular.

Chapter 5

Interaction with the File System

5.1 Introduction

This chapter describes the relationship between process migration and the Sprite �le system.

Though the �le system simpli�es migration by providing a single system-wide shared name

space and transparent access to �les and devices on di�erent hosts, it also has proven to be

the most di�cult aspect of migration to manage. The complexity arises from two sources:

UNIX semantics, which complicates the process migration mechanism, and �le data caching,

which a�ects the performance of migration.

With respect to process migration, the most demanding requirements of UNIX compat-

ibility are shared �le access positions and references to deleted �les. First, in a UNIX-like

system such as Sprite, processes can share a common access position for a �le as a result

of inheriting �les through process creation. In a system without process migration, access

positions can be shared only by processes on a single machine, so they do not create a prob-

lem. Unfortunately, migration can cause processes on di�erent machines to share a common

stream and therefore share a single access position into a �le. (Figure 5.1 depicts a possible

scenario.) Keeping the shared access position consistent in the face of multiple migrations

and process creations can be di�cult, because di�erent hosts may update the access position

simultaneously. Second, a �le cannot be deleted if a process has it open; instead, the �le is

deleted when the last reference to it is removed. When an open �le migrates, the reference

to the �le must never appear to be removed or the �le might inadvertently be deleted.

File data caching is the other principal source of complexity for migration. The Sprite

�le system provides high performance by permitting hosts to use nearly all of memory

to cache �le data. File servers are responsible for guaranteeing \consistent access" to the

cached data; this is performed by disabling caching when �les are accessed by multiple hosts

while any host is writing the �le, and by ushing modi�ed data to �le servers if a process

on a di�erent host opens a �le [NWO88]. Sprite's caching policy impacts process migration

and load sharing in two ways:

42

5.1. INTRODUCTION 43

Access
position: 128

Access
position: 128

Streams

Stream

tables

Process A state

Access
position: 128

references: 1

(a) 1 process, 1 host

Host H

references: 2

Process A state Process B state

(b) 2 processes, 1 host

Host H

references: 2

Process A state Process B state

(c) 2 processes, 2 hosts

Host H Host I

Host ?

Figure 5.1: Shared streams across a network . In (a), process A on host H contains a reference to

a particular stream, managed by H. (b) After the process forks a new child, B, the stream is shared

by two processes on H, and is still managed by H. (c) If process B migrates to host I, the stream is

shared by processes on host H and host I. Managing a stream that is shared by processes on di�erent

hosts requires a mechanism for synchronizing use of the access position. The access position may

be managed by H, but as I show in Section 5.3.2, it may simplify matters to manage it on another

host.

44 CHAPTER 5. INTERACTION WITH THE FILE SYSTEM

Process transfer. Migrating a process may cause a cacheable �le to become uncacheable,

or vice-versa, because the set of hosts accessing the �le changes. The implementation

of the �le system is therefore complicated by the need to manage each of several

possible cases. Also, modi�ed data must be ushed to �le servers before the migration

can complete, thereby slowing down migration.

Load sharing. Data must also be ushed when a process on one host accesses the output

of a process from another host. Without load sharing, consistency actions of this

type would be infrequent, but load sharing can cause many hosts to write data that a

single host will later read. (For example, pmake could execute compilations on several

di�erent hosts, then run the linker on one of the hosts. The object �les read by the

linker would be ushed to their server before the linker could access them.) Note that

cache ushes due to load sharing do not a�ect complexity, but the time needed to

obtain the data from each host can reduce the bene�ts of executing tasks in parallel.

The rest of this chapter is organized as follows. The next section discusses the Sprite

�le system in detail and de�nes some terminology that is used throughout this chapter.

It describes the state associated with an open �le and indicates how that state a�ects

migration. Section 5.3 presents the mechanism used in Sprite to transfer open �les and

to support shared �le access positions. Section 5.4 discusses the e�ect of �le caching on

the time to migrate processes and the execution speed of processes that use load sharing.

Section 5.5 summarizes the chapter.

5.2 The Sprite File System

In order to discuss the relationship between migration and the �le system in greater detail,

it is necessary to describe the internal structure of the �le system. Section 5.2.1 explains

how Sprite provides transparent access to �les and devices across a network, and it de�nes

some terminology. Section 5.2.2 discusses cache consistency in Sprite.

5.2.1 Transparent File Access

The Sprite �le system implements a single system-wide shared name space, and any Sprite

host can access a �le or device on any other host. This degree of transparency is obtained

by separating the host that is responsible for naming an object from the host that controls

access to the object. The host that names an object is known by the generic term of �le

server , while the host that controls its access is known as the object's I/O server . (Note

that in the discussion in Section 5.1, the term \�le server" usually referred to a host that

is in fact an \I/O server.") A host that uses a �le or device is known as a client of the I/O

server.

The protocol for accessing a �le system object depends on the type and location of

the object. For ordinary �les, the �le server and I/O server are the same; to open one,

5.2. THE SPRITE FILE SYSTEM 45

I/O Server

Pass file name

File Server

Name resolution

Name openReturn I/O server

Pass file identifier

Bookkeeping

Client

open fileTime

I/O open

Complete bookkeeping

Return I/O handle

Figure 5.2: File servers versus I/O servers. When a process performs the open kernel call to

open a �le on a client workstation, the �le server that manages the name for the �le resolves the

object referred to by the name and performs bookkeeping associated with the name. It returns the

identity of the I/O server for the object, and the client contacts the I/O server to complete the

operation of opening the �le. The I/O server does its own bookkeeping to manage the �le.

a client contacts the �le server for the �le, and it immediately obtains a token it uses to

access the �le in the future. For devices, however, the I/O server is often di�erent from

the server responsible for naming the device. Multiple communications are required to

open an object with a di�erent I/O server from �le server. As an example, the name

/hosts/larceny/dev/printer might refer to a device on the host named \larceny." To

open the device, a process would perform a system call, which would involve an RPC to the

�le server responsible for the name \/hosts/larceny/dev/printer." That RPC would

return a reference for the device, including an indication that the I/O server for the device

is the host \larceny". Subsequent read or write operations, as well as some others, would

be handled via RPC's to larceny. The relationship between �le servers and I/O servers is

depicted in Figure 5.2.

The state associated with an open �le is managed hierarchically. Each process has a

table of descriptors for open �les, which map from integers to I/O streams . A stream

includes a count of the processes using it, an access position into the �le, and a pointer to a

lower-level object known as an I/O handle. In turn, an I/O handle includes a count of the

streams referring to it, the mode in which the �le is accessed (reading, writing, and so on),

and an identi�er for a particular �le on a particular I/O server [Wel90]. This hierarchy is

depicted in Figure 5.3.

46 CHAPTER 5. INTERACTION WITH THE FILE SYSTEM

clients

Server S
Client list

Process A state Process B state Process C state

I/O handle

Access
position: 0

I/O Handle
Host H Server

references: 2
read/write

Streams

I/O handles

Stream

tables

I/O handles

Network

I/O Handle
Host J

I/O Handle
Host I

Server: S

references:...
read-only

Server: S

references:...
read-only

I/O handle

Access
position:128

3 read
1 write
0 exec

references:

Stream
<H, 123><H, 99>

Stream references: 2 references: 1

Handle
<S,456>

Figure 5.3: File state. Processes refer to streams, which refer to I/O handles. The I/O handles

point to the I/O server, which stores its own copy of the I/O handle. The server keeps track of

the usage of the �le to guarantee consistent caching and to know when the last reference to a �le

is removed. In this example, host H has three processes using a total of two streams into a �le

identi�ed as <S,456>. Hosts I and J also have streams that refer to handle <S,456>. The reference

count shows that three hosts have readable streams for <S,456> and only one host has a writable

stream to it.

5.2. THE SPRITE FILE SYSTEM 47

5.2.2 File Data Caching

The I/O server for a �le is responsible for ensuring consistent access to the �le in the event

that the �le is shared by multiple hosts. The server keeps track of which hosts have the

�le open for reading and writing. If a �le is open on more than one host and at least one

of them is writing it, then caching is disabled; all hosts must forward their read and write

requests for that �le to the server so they can be serialized. With respect to �le cacheability

after migrating an I/O stream, there are four possible scenarios:

1. The �le's status does not change. If no host is accessing the �le in a writable mode,

then it is cacheable on every host. Alternatively, if the �le was already being accessed

by multiple hosts with at least one host writing the �le, it was uncacheable prior to

migration and may continue to be uncacheable afterwards.

2. The �le changes from uncacheable to cacheable. If the �le is originally open on both

the source and the target, and migration removes the last reference to the �le on the

source, then the �le can be cached on the target.

3. The �le changes from cacheable to uncacheable. This transition occurs if the �le is

open for writing on the source (and is not accessed on any other host), and then after

migration is open on both the source and the target.

4. The �le changes from being cacheable only on the source to being cacheable only on

the target. As in the previous case, if the only use of the �le is originally on the

source, the �le will be cacheable on the source, even if it is open for writing. If all

streams that refer to the �le move from the source to the target, the �le will then be

cacheable on the target. This case is similar to case 1; however, the �le is cached on

exactly one host at a time.

A table of the relative frequency of each case in practice appears in Chapter 8 on page 98.

When a writable open �le is transferred during migration, if the �le is cacheable on the

source machine (as in cases 3 and 4 above), the �le cache on the source may contain modi�ed

blocks for the �le. These blocks are ushed to the �le's I/O server during migration, so

that after migration the target machine can retrieve the blocks from the �le server without

involving the source. This approach is similar to the mechanism for virtual memory transfer

and thus has the same advantages and disadvantages. It is also similar to what happens

in Sprite for shared �le access without migration: if a �le is opened, modi�ed, and closed

on one machine, then opened on another machine, the modi�ed blocks are ushed from the

�rst machine's cache to the server at the time of the second open. Section 5.4 discusses the

performance implications of this approach to caching.

48 CHAPTER 5. INTERACTION WITH THE FILE SYSTEM

5.3 Transferring Open Files

The mechanism to transfer open-�le state during migration has been implemented in Sprite

twice, �rst by Mike Nelson and then by Brent Welch. In each case I assisted in debugging,

but not in the overall design. Therefore, for the rest of the chapter, I use the term we when

discussing work performed by multiple members of the Sprite research group, and I to refer

to work I did on my own. (The same actually holds true elsewhere in this thesis but is

much less pronounced.)

5.3.1 Close-and-reopen

In the �rst implementation, open �les were transferred by encapsulating their state into

a bu�er, closing the �les on the source, and reopening the �les on the target. While this

scheme worked in the majority of cases, it su�ered from two de�ciencies. First, since the

�le would actually be closed temporarily in the process of migrating the stream, it could

be deleted completely if its reference count had become zero. Second, if processes shared

a single stream and migration caused them to execute on di�erent hosts, the stream would

no longer be shared: by opening the �le anew, the migrated process would have its own

distinct access position for the �le.

In practice, the problem of deleted �les disappearing was more important than sup-

porting shared access positions, because many UNIX utilities open �les and immediately

delete them so they will be removed upon termination. Therefore, we had to change �le

transfer to move the open-�le reference from source to target without ever closing the �le.

We accomplished this by opening the �le on the target before closing the �le on the source.

However, for writable �les, this change had a di�erent unexpected side-e�ect: since there

was a window of time during which both the source and target had a �le open, the �le

would appear to be write-shared and the server would disable caching for the �le. Once the

Sprite �le system disables caching for a �le, it does not reenable caching until all streams

to the �le have been closed, even if at some point only one host accesses the �le. A tran-

sient write-sharing conict would therefore disable caching inde�nitely, adversely a�ecting

performance.

It would have been possible to change Sprite's caching algorithm to avoid permanently

disabling caching for a �le, but that alone would not have permitted migrated processes to

share �le access positions. The next subsection describes an alternative approach.

5.3.2 Shared Access Positions with Atomic Transfer

Welch reimplemented the �le system for several reasons, including the problems we had

with process migration. He addressed the problem of shared access positions, and he imple-

mented special code to support migrating streams atomically, so that the state maintained

by the I/O server for crash recovery and cacheability could be kept consistent. In his the-

sis [Wel90], Welch describes the current implementation of the Sprite �le system and its

5.3. TRANSFERRING OPEN FILES 49

support for migration. In the remainder of this section, I highlight the important aspects

of this implementation as it relates to migration.

Shared Access Positions

Just as Sprite permits only a single host to cache a writable �le, it permits only a single

host to manage the access position of a stream. With �le caching, a client workstation

is permitted to cache a writable �le until it becomes shared, at which point only the I/O

server for the �le may cache it. With streams, a client workstation manages a stream used

by its own processes until the stream becomes shared across the network, at which point

only the I/O server for the stream manages the stream's access position.

To support this model of stream access, Welch separated the notions of stream descrip-

tors and stream references . A stream descriptor is state associated with an open �le, such

as the access position; each stream descriptor is unique throughout the network. A stream

reference associates a stream descriptor with a process, and as a result of migration, more

than one host can have a reference to the same stream descriptor. Stream references can

migrate between hosts, while a stream descriptor is stored by a single host.

Stream descriptors are used in one of two modes, depending on whether the stream is

shared by multiple hosts. Normally, a stream is used by only a single host, and that host

manages the stream descriptor (and therefore the access position). The I/O server for the

�le referenced by the stream stores a copy of the stream, containing information about the

�le it references and a unique identi�er for the stream, but the I/O server's copy is not

used. (Welch refers to the I/O server's copy of the stream descriptor as a shadow stream.)

If a stream later becomes shared between machines, then each machine has a reference to

the stream descriptor, which the �le's I/O server manages. None of the hosts that use the

stream stores the access position, nor do they cache the �le. Instead, all operations on the

�le are forwarded to the server. (Thus, in Figure 5.1, the host shown with a question mark

would in fact be the I/O server for the �le.) In the current implementation, all streams have

shadow streams on the I/O server, but Welch notes that shadow streams use unnecessary

memory and should be created only when a stream �rst becomes shared.

Figure 5.4 shows a shared stream corresponding to the stream <H,99> in Figure 5.3. It

depicts the stream after process B has migrated from host H to host K. Neither host H nor

host K stores the access position for stream <H,99>. Instead, they store information about

the stream descriptor, which is managed by the I/O server S. The server stores the access

position for the stream as well as information about the hosts that have references to it.

Another possible approach to shared access positions is the one used in LOCUS [PW85].

If process migration causes a �le access position to be shared between machines, LOCUS

lets the sharing machines take turns managing the access position. The operating system

on each host agrees to acquire the \access position token" for the �le before performing

I/O on a �le with a shared access position. While a machine has the access position token

it caches the access position and no other machine may access the �le. The token rotates

50 CHAPTER 5. INTERACTION WITH THE FILE SYSTEM

Access
position: 212

clients

I/O handle

References: 2

Process A state

Host H

Stream
descriptor

I/O handle

References: 1 <H, 99>

Host K

Process B state

I/O handle

References: 1 <H, 99>

<H, 99>

Server S

shadow stream

Stream
tables

Stream
references

Stream
descriptor

Figure 5.4: Shadow streams. This �gure elaborates on Figures 5.1 and 5.3. Shared streams in

Sprite are supported by forwarding operations on the stream to the I/O server of the �le referenced

by the stream. The I/O server's copy of the stream, known as a shadow stream, contains the access

position for the stream as well as information about each of the hosts using the stream.

5.3. TRANSFERRING OPEN FILES 51

I/O Server

Migrate process

Notify server

Update references
Call back to source

Source

Encapsulate
open streams

Time

Release state Return recent state

Complete bookkeeping

Target

Deencapsulate
open streams

Complete bookkeeping

Reply

Figure 5.5: Transferring open �les. The source encapsulates information about all the streams

of a process, and it transfers �le state to the target when migration is initiated. For each stream,

the target noti�es the I/O server that the stream has been moved. During this call the server

communicates again with the source to release its state associated with the �le and to obtain the

most recent state associated with the stream. The I/O server then completes its own bookkeeping

and responds to the target's request.

among machines as needed to give each machine access to the �le in turn. This approach

is similar to the approach LOCUS uses for managing a shared �le, where clients take turns

caching the �le and pass read and write tokens around to ensure cache consistency. In

his thesis, Welch compares the schemes Sprite and LOCUS use to manage shared access

positions; briey, the LOCUS method requires less network communication if one host

performs many operations on a �le before another host performs any, while Sprite's method

is more e�cient if operations from di�erent hosts are continually intermixed. Since we did

not believe that sharing would occur often enough to impact performance, regardless of the

approach taken, we chose the approach that corresponded to the Sprite cache consistency

algorithm: namely, storing shared state on the �le server rather than passing a token around.

Atomic Transfer

The �rst implementation of open-�le migration transferred �les using existing mechanisms

for open and close, but new migration-speci�c mechanisms were necessary to avoid need-

lessly making �les uncacheable and to support shadow streams. Figure 5.5 shows the

mechanism used by Sprite for migrating open �les. The source encapsulates stream state,

52 CHAPTER 5. INTERACTION WITH THE FILE SYSTEM

including the �le's access position, into a bu�er and transfers the encapsulated state to the

target. In the most general case

1

, the target machine performs a remote procedure call to

the I/O server and requests that the I/O server update its internal tables to reect that

the �le is now in use on the target instead of the source. The server in turn calls the source

machine to have it release its reference to the stream; the source responds with information

about whether any other processes on the source are using the stream. Using that infor-

mation, the server can determine whether it is appropriate to cache the �le on the target,

and whether the stream access position should be managed by the I/O server itself or by

the target machine.

This two-level remote procedure call synchronizes the three machines (source, target,

and server) and provides a convenient point for updating state about the open �le. It also

permits asynchronous operations on the stream or the �le to occur during migration: for

example, another process on the source might duplicate or close the stream, or modify the

stream's access position. Originally, the access position was encapsulated along with the

rest of the information about the stream, but changes to the access position could then

be lost once the stream was deencapsulated with its old access position. Now, changes to

the access position during migration are handled by retrieving the access position from the

source at the time the transfer completes and the source releases its reference to the stream

descriptor. The I/O server coordinates other changes to the state of the stream, such as the

reference counts it uses for crash-recovery, by locking the stream while it calls back to the

source. This makes the transfer of the stream reference atomic with respect to other �le

system operations. However, locking the stream (and underlying I/O handles) while open

�les are transferred also complicates synchronization and makes the system vulnerable to

deadlock unless considered carefully.

5.4 File Caching

There are two levels of caching in Sprite, one on �le servers and one on client workstations.

Servers cache �le data in their memories to avoid disk accesses, while clients cache data

to avoid using the network. While server data caching is important for performance, since

it avoids disk tra�c, client caching is even more important: caching data on clients not

only reduces network tra�c, but it reduces server processor utilization as well. As a result,

servers can support more clients e�ectively [Nel88]. In exchange for higher performance

and lower utilization, however, the system must face the complexity of keeping the caches

consistent.

As I described in Section 5.2.2, the I/O server is the central point for cache consistency

operations in Sprite. Nelson described two forms of write-sharing: sequential sharing and

concurrent sharing. If one host writes a �le and then closes it, modi�ed blocks for the

1

It is possible for the I/O server to be the source or target of the migration, in which case some RPC's

become local procedure calls.

5.4. FILE CACHING 53

�le are not immediately written back to the �le's I/O server. Instead, they remain in the

host's cache in the hope that the blocks will quickly be deleted or overwritten. If another

host accesses the �le while modi�ed blocks are still cached by the �rst host, the I/O server

detects sequential write-sharing . It calls back to the �rst host to write modi�ed blocks back

to the I/O server. If two hosts have a �le open simultaneously, and at least one host is

writing the �le, then the I/O server detects concurrent write-sharing . In that case, when

the sharing begins, any host that is caching the �le must ush the �le from its cache, again

writing any dirty �le blocks to the I/O server, and stop caching it. Subsequent reading and

writing is performed via RPC's to the I/O server.

Considerations of �le caching account for much of the complexity and overhead asso-

ciated with process migration. First, when a process migrates, its writable �les must be

ushed from the cache of the source machine. Second, if processes on di�erent hosts write

a collection of �les that are then read by a process on a single host, those �les must be

written back to their servers. The following subsections discuss these implications.

5.4.1 Cache Flushing During Migration

Cache consistency has a signi�cant e�ect on the performance of processes both during

and after migration. A variety of factors impact performance; some factors are due to

the basic cache consistency algorithm used in Sprite, and some are due to the particular

implementation:

� Processes cannot migrate until all modi�ed blocks for their open �les have been ushed

to I/O servers.

� All transfers within the �le system are performed sequentially in 4-Kbyte units, so

the e�ective bandwidth when ushing modi�ed data is substantially less than the

maximum RPC bandwidth.

� Blocks are often transferred twice, once from the source to the I/O server and once

from the I/O server to the target if they are later referenced.

If Sprite could avoid ushing �le data as a side-e�ect of migration, the performance of

process migration could be improved. This change could be accomplished by modifying

the basic cache-consistency algorithm to perform consistency on a block-by-block basis;

however, such a change might increase the complexity of the �le system by a degree that is

disproportionate to the improvement obtained. There are a number of simpler improvements

that could also reduce the cost of migration. These improvements, described below, are

not likely to be implemented unless the impact of �le transfer on migration performance

increases substantially.

One possible change would be to ush data asynchronously. Rather than making an

open call or a stream migration wait until data has been ushed to a server, the server

could block other operations such as reading and writing. In the meantime, data could be

54 CHAPTER 5. INTERACTION WITH THE FILE SYSTEM

transferred in the background. Migrations would be faster, but after migration a process

might have to wait for one or more �les to complete being ushed before it could continue.

A second change would be to transfer �les more e�ciently. For example, the �le sys-

tem transfers data in 4-Kbyte units, which is limited by the maximum RPC bandwidth of

750 Kbytes/sec between two SPARCstation 1 workstations.

2

The maximum bandwidth us-

ing 16-Kbyte transfers is 900 Kbytes/sec. Thus, the speed of �le transfer could be improved

by increasing the unit of transfer. The bandwidth available to ush a single �le could also

be increased by modifying the �le system to use multiple RPC channels simultaneously, as

the virtual memory system does. Either of these changes would require signi�cant modi�ca-

tions to the �le system, though the resulting changes would bene�t all �le-system network

transfers, not just those related to migration.

A third change would be to transfer modi�ed data directly from the source of a migration

to the target, when a �le is cacheable by the target. For those �les that are read shortly

after being written, this change would reduce the number of network transfers required.

Transferring �le blocks directly would be analogous to changing virtual memory transfer

to send modi�ed pages directly to the target, and the same complexity considerations that

were discussed in Section 4.2.1 apply in this case.

5.4.2 Cache Flushing Due to Load Sharing

Cache ushing a�ects not only process transfer, but load sharing as well. Consider a parallel

compilation, in which a large number of object �les are created simultaneously on separate

hosts, and then linked together on a single host. When the linker opens the object �les, the

I/O server for the �les detects sequential write-sharing and causes the �les to be ushed

to the server. Each �le is opened, and ushed, sequentially. The host performing the link

obtains the �les from the server as individual blocks are referenced.

With the above scenario, it is possible for the cost of �le transfers to o�set some of

the bene�t obtained from parallel execution. For example, I measured one benchmark that

compiled 139 �les in parallel and linked them together. The total size of the object �les was

1.2 Mbytes. The time to link the �les together when they were all in a single cache was 8

seconds, while the link took 35 seconds when �les were spread across 12 hosts. Since Sprite

writes modi�ed blocks to the �le server every 30 seconds, and the time to compile all the

�les was approximately 120 seconds, many of the �les were undoubtedly ushed prior to

the link step. Nevertheless, the time to ush the remaining �le blocks and read them into

the linking machine's cache was much longer than the time needed to perform the actual

link.

The problem with sequential write-sharing due to load sharing is not only that data

must be transferred �rst to the I/O server and then to the client, but also that the transfers

2

The �le system bandwidth between a SPARCstation 1 client and a Sun-4/280 server in practice is

480 Kbytes/sec, due to the slower processor on the Sun-4/280 and to processing overhead within the �le

system.

5.4. FILE CACHING 55

start only when each �le is opened, so they are performed sequentially. Several techniques

are possible for reducing the impact of cache consistency on load sharing; some of these were

mentioned above in Section 5.4.1 in reference to improving the performance of migrating a

process with cached modi�ed data. Possible solutions include:

� Reduce the delays resulting from opening numerous �les that must be ushed. For

example, change open not to block while a �le is ushed, so that applications can

open all the �les they access without being delayed by �le transfers. Alternatively,

ush �les back to I/O servers more quickly, so less modi�ed data must be ushed at

the time �les are accessed on new hosts. However, the latter approach would reduce

the overall caching performance of the system by causing some data to be written

back unnecessarily.

� Make applications more intelligent.

{ Have an application \pre-fetch" �les. For example, a program such as the linker

could fork one process per �le and have its children open the �les in parallel.

However, children cannot pass �le descriptors to their parents, so the parent

would have to open the �les again, sequentially, once all the open kernel calls

completed.

{ Have the application \pre-ush" �les, instead. Since the delay in opening �les

results from data being ushed at the time the open call is performed, an intelli-

gent application could force output �les to their server before they were accessed

on another host. For example, pmake could open the �les it had caused to be

created (forcing them to be written back to their I/O servers, assuming they were

written by a host other than pmake's) when it had no other work to perform, or

applications such as the compiler could ush �les to their server before closing

them.

Most of the changes listed above would substantially increase the complexity of either

the �le system or application programs, and none has been implemented to date. The only

change that could be implemented trivially is to vary the delay used to determine when

to ush a �le back to its I/O server. Changing this policy could have a negative e�ect

on system performance in general, despite any improvement in the case of load sharing.

Modifying application programs to account for short-falls in the �le system is unappealing,

though isolating changes in a small number of programs that take advantage of load sharing,

such as pmake, might make such modi�cations tolerable. Ultimately, the overhead of cache

ushing impacts the speedup obtained from parallel compilation less than other factors

such as contention for �le servers (as described in Chapter 7). The changes to reduce

the overhead of cache ushing should be deferred until cache ushing accounts for a more

signi�cant limitation on overall speedup.

56 CHAPTER 5. INTERACTION WITH THE FILE SYSTEM

5.5 Summary

Supporting time-sharing �le-system semantics in a system with many hosts is di�cult, and

supporting those semantics in the presence of process migration is even harder. Transferring

open �les between hosts has required careful consideration about cacheability, reference

counts, and asynchronous operations on �les or streams during migration. In Sprite, the

I/O server for a �le is ultimately responsible for performing the transfer of stream references

in an atomic fashion and invoking any necessary cache consistency operations.

Though �le caching provides high performance for the system as a whole, Sprite's cache

consistency policy detracts from the speed of process migration. When a process migrates,

the migration cannot complete until all modi�ed data blocks belonging to the process's open

�les have been written to their I/O servers. This delay is exacerbated by the relatively slow

rate at which data blocks are written.

Cache consistency actions also a�ect the performance improvement available from dis-

tributing load across multiple machines. If a process on one host accesses data generated

on each of several other hosts, the process will be delayed while data blocks are ushed, one

�le at a time. Without changing Sprite's cache consistency algorithm substantially there is

not much the system can do to make existing applications access data faster under those

circumstances, but applications can reduce the impact of cache ushing by forcing �les to

be ushed before they actually need to access them.

Chapter 6

Host Selection

6.1 Introduction

Until now I have focussed on the low-level mechanisms for transferring processes and sup-

porting remote execution. I have described how, given a process and a host to which it

should move, Sprite can transfer the process and permit it to resume execution on its new

host. However, there is more to load sharing than remote execution. The selection of a

target host for migration is also an important mechanism, one that a�ects the ease and e�-

ciency of migration. There are many possible criteria for deciding when hosts are available,

and numerous methods for locating and assigning available hosts. This chapter discusses

the goals of host selection and presents several alternative implementations of host selection.

The remainder of this chapter is organized as follows. The next section discusses criteria

for host availability. Section 6.3 discusses the goals of a host selection facility, presents

several di�erent methods for selecting hosts, and indicates the relative advantages and

disadvantages of each approach. Section 6.4 concludes the chapter.

6.2 Host Selection Criteria

In a system with load sharing, a host with more than one runnable process can pro�tably

o�oad processes onto a host whose processor is underutilized.

1

However, it may be insuf-

�cient merely to select any host that has an idle processor at one instant in time. Other

considerations include: processor load over a longer interval, host autonomy, hardware con-

�gurations, and caching e�ects.

The most important issue is the determination of when a host is su�ciently underutilized

to warrant moving processes onto it. The simplest metric for deciding whether a host has

1

The same argument holds true for multiprocessors, but this research has been performed only in a

uniprocessor environment and is described in those terms.

57

58 CHAPTER 6. HOST SELECTION

excess capacity is to check whether it has any runnable processes. However, the number of

runnable processes can uctuate greatly from moment to moment, as I/O-bound processes

become momentarily runnable or CPU-bound processes perform a small amount of I/O.

The system should therefore consider load over a long enough period that momentary

uctuations will not cause a loaded host to be selected or an unloaded host to be bypassed.

At the same time, it must also prevent long-term load averages from blinding the host

selection facility to changes in the state of a host. A host that has recently changed from

loaded to underutilized may have a high load over the past several minutes, while a host

that has just started running a CPU-bound process may appear to be underutilized on

average. No single metric in isolation is appropriate.

The trade-o�s between using short-term and long-term average loads complicate host

selection: the system must balance the desire to use hosts e�ectively with the need to avoid

migrating onto a loaded host, and it must minimize the overhead of making host selection

decisions. For example, one possible approach would be to use a small window for averaging

utilization (such as a few seconds), but the overhead of keeping the data about each host's

utilization current would be substantial. Longer intervals would reduce overhead but make

the system less responsive to sudden changes in load. Averages over the past 30 seconds or

a minute may be a reasonable compromise between overhead and accuracy, depending on

the size of the system and the criteria used for host selection.

If the system can predict future changes in load, it can reduce the inaccuracy of using

a longer time-frame. Since the load sharing facility is itself responsible for many of the

sudden bursts of processing activity within the system, it can anticipate changes in load by

increasing the count of runnable processes by the number of processes expected to migrate

onto a host in the near future. MOSIX [BSW89] uses this approach to prevent many hosts

from \ooding" an idle host by migrating many processes onto it before its measured load

is high enough to prevent further migrations.

The second issue for host selection, host autonomy, arises when the system contains

personal workstations. If each host is intended to provide a minimum level of performance

to its owner regardless of activity elsewhere in the system, then work should be o�oaded only

onto hosts that are not actively being used. The minimal criteria for deciding that a host

can accept foreign processes would therefore include not only excess processing capacity but

also a requirement that a host be idle (i.e., have no keyboard activity) for a predetermined

period of time. Furthermore, the longer a host is idle, the more desirable a candidate it is.

Mutka and Livny found that hosts that have been idle for a substantial period of time will

most likely remain idle for a long time, while hosts that have been idle for a short time are

likely to become active again quickly [ML87]. My own measurements, reported below in

Section 8.5, support their results.

Other criteria, such as hardware con�gurations and �le caching, can permit a host se-

lection facility to make a more intelligent selection from among multiple available hosts.

Hardware con�gurations can be extremely important if the resources available within a

class of hosts vary. Memory sizes are particularly likely to vary from machine to machine.

6.2. HOST SELECTION CRITERIA 59

Since additional memory can make the di�erence between a large process thrashing virtual

memory and running e�ectively, and can also improve caching performance, hosts with more

memory should be selected over hosts with less memory. Other possible hardware consid-

erations include coprocessors or other devices. If some hosts o�er performance advantages,

using those hosts when they are available would be preferable to using other hosts.

File caching can improve performance if hosts are reused for repeated instances of a

single task. If an application reads a �xed set of input �les each time it is run, then

repeatedly executing the application on the same host will gain the bene�t of cached input

data (frequently referenced �les may remain in the cache inde�nitely). Therefore, when

selecting a host on which to execute a command, one might consider whether the command

recently executed on a host that is currently available. At the same time, independent tasks

should use di�erent hosts, so that unrelated processes do not cause the �les used by one

another to be discarded from the cache.

Table 6.1 summarizes the above criteria.

Criterion Purpose

Processor load Avoid contention

Idle time Respect workstation ownership

Hardware con�guration Obtain higher performance with more

memory or special hardware

Past host allocations Use warm �le caches

Table 6.1: Criteria for host selection.

6.2.1 The Sprite Policy

Based on the above discussion, one can conclude that there are two components of host

selection: identifying suitable candidates and selecting from among those candidates. Pro-

cessor load and idle time are useful for determining when a host is usable for load sharing.

Additional factors, such as di�erences in hardware and past host assignments, can help the

system select hosts with particular performance advantages. This section describes a simple

policy Sprite uses to decide when hosts are available and to choose among multiple available

hosts.

Host Availability

For a Sprite host to be considered as a migration target, it must meet two absolute minimal

requirements: �rst, it must have less than one runnable process, averaged over the past

minute; and second, it must have had no keyboard input in the past 30 seconds. The �rst

60 CHAPTER 6. HOST SELECTION

requirement ensures that long-running CPU-bound processes already on the host do not

compete with new foreign processes for processor cycles. The second requirement prevents

foreign processes from degrading the interactive response of persons who are actively using

their hosts. The value of the threshold for declaring a host as idle depends on the likelihood

of eviction and the overhead of evicting processes; this value in Sprite was decreased from

�ve minutes to 30 seconds after the user community collectively agreed that evictions were

not invasive.

These requirements reduce the likelihood of foreign processes competing with local pro-

cesses for processing, but they do not prevent foreign processes from contending with each

other. Sprite prevents contention by allowing only one application of a given class (e.g.,

compilations or long-running simulations) to migrate onto a host at a time. An application

such as pmake can obtain several idle hosts for an inde�nite period of time, then send a new

task to a host each time the previous task using the host completes. (The task can create

as many processes as it chooses to, but normally only a single process per host will be ready

to execute at any given time.) Allowing an application to reuse a host eliminates the need

to select and return hosts for each individual sub-task, which correspondingly reduces the

load on the host selection facility. In this sense, Sprite's approach to load sharing is similar

to Amoeba's \processor pool," which permits applications to reserve hosts for an extended

period of time [MvRT

+

90].

This technique for avoiding contention is also similar to MOSIX's method of increasing

the reported processor load with the expectation that the actual load will immediately

increase. However, the adjustment performed by MOSIX is temporary, so if a host has a

low load some time after receiving a foreign process, it may accept additional processes.

The original foreign process may have to contend with an inux of new processes if it later

performs much additional processing, but in that case MOSIX will migrate processes again

to reduce the load. Sprite, on the other hand, does not perform automatic migration to

correct imbalances in processor load. We chose to err on the side of being too conservative,

possibly missing opportunities for multiple applications to share a single processor, rather

than complicate the system by handling overloaded hosts.

Selecting an Idle Host

Once a system has decided that a set of hosts have excess capacity, it must choose from

among those hosts. If only one host were found to be available, host selection would be

trivial. Normally, though, several hosts meet the minimal criteria of processing capacity

and idle time described above. The system can choose randomly from among several idle

hosts, knowing that any of them would be capable of providing a signi�cant performance

improvement, or it can consider di�erences between hosts in an attempt to gain additional

bene�ts. As an extreme example, the system could use a complicated function of various

factors to assign each host a rating of its potential value, and then select hosts in order.

A simpler method would be to rank hosts based on one criterion, such as memory size,

and then rank hosts within each class on another criterion, such as idle time. Sprite uses a

6.2. HOST SELECTION CRITERIA 61

method along the lines of the latter.

In Sprite, we have made some assumptions about our execution environment. First, we

assume that any host with a \low" load will execute foreign processes as well as any other

host with a \low" load. Second, we assume that the di�erences between hardware con�gu-

rations are not signi�cant enough to warrant preferential treatment for some hosts. In our

current con�guration, all DECstation 3100 workstations are identical, and SPARCstation 1

workstations have between 16 Mbytes and 28 Mbytes of memory. To date, 16 Mbytes

of memory have been ample for all the tasks that use migration. (As more applications

take advantage of migration, however, we may need to revise this assumption and take

memory sizes into account. Similarly, we may eventually need to consider other hardware

characteristics, such as oating-point coprocessors.)

With these assumptions in mind, the primary characteristics that distinguish hosts are,

�rst, the likelihood that they will be reclaimed, and second, the contents of their �le caches.

Minimizing the likelihood of eviction helps both foreign processes and users who return

to their hosts, while warm caches can provide performance improvements to some foreign

processes. Sprite addresses both of these goals by assigning hosts in order of idle time, with

the longest-idle hosts being assigned �rst. In Chapter 8, I report empirical data to show how

this policy signi�cantly reduces the rate of evictions relative to random selection. Chapter 8

also reports empirical data on caching e�ects. In our environment, assigning hosts in order

of idle times tends to assign the same set of hosts to the same processes, permitting them

to bene�t from warm caches with no additional implementation complexity.

Fair Allocation of Idle Hosts

One problem with reserving an idle host for a single application is that an application

might use every host for a prolonged period of time, preventing other applications from

obtaining idle hosts. Sprite provides fair allocation of idle hosts in two ways. First, if an

application requests a host and none are available, the host selection facility checks whether

another application is using signi�cantly more hosts than the one performing the request.

If so, a host is reclaimed from the application using more hosts, causing its processes to be

evicted to their home machine, and the application that just requested a host is assigned

the newly available host. Second, an application speci�es whether it expects to use the host

for a prolonged period of time. In practice, the system uses two priorities, distinguishing

between long-running processes such as simulations and shorter, higher priority processes

such as compilations. Hosts that are being used for long-running tasks may still be used over

short periods for more important tasks, with the operating system responsible for executing

short-lived processes at higher priority than processes that have been executing for a long

time. Empirically, these methods permit the Sprite host selection facility to satisfy over

80% of all requests, despite the policy of exclusive access (see Chapter 8 for details).

62 CHAPTER 6. HOST SELECTION

6.3 Host Selection Mechanism

When a process wishes to o�oad work, it needs a mechanism for locating idle hosts and,

depending on policies imposed by the environment, possibly reserving those hosts so that

processes from other hosts do not use them simultaneously. There are a number of possible

criteria for the design of a host selection facility. For example, Theimer and Lantz listed

three principal goals: performance, scalability, and fault tolerance [TL88]. The performance

of host selection should be su�cient to impose a minimal impact on processes not using the

facility and low latency on scheduling processes that do use the facility. By their de�nition

of scalability , a host selection facility should be able to support hundreds of hosts. Finally,

to be fault tolerant , a host selection facility should be disabled by host failures for at most

a few seconds.

I would modify the criteria proposed by Theimer and Lantz to include two additional

goals: fairness and simplicity. By fairness , I mean that one user should not be permitted

to monopolize available hosts to the detriment of other users, as discussed in Section 6.2.1.

I will demonstrate that by comparison to the other goals listed above, this condition may

place considerable constraints upon the methods used to select hosts. Simplicity is of course

an important goal of any system, within the constraints imposed by other goals.

Architectures for host selection fall into several categories. They are distinguished by

the following attributes:

� centralization: Are the data about host availability stored in a single location or

on each host separately? Are host selection decisions made by a single entity or by

each host separately? In general, centralizing a host selection facility on a single host

makes it easier to allocate hosts accurately and fairly, since the agent that selects a host

has complete information about the system. However, centralization also makes the

facility more susceptible to failures. If the host on which host availability information

is stored should crash, then the data will become unavailable. Also, a centralized host

may prove to be a performance bottleneck on a large system, since it must manage

requests and update messages for hundreds of hosts.

� accessing host data: How do processes select hosts? Information about host avail-

ability can be kept in one or more shared �les, or it can be stored in the memory of

one or more server processes. Using the �le system is simpler than using processes,

because the �le system can provide synchronization and permanence, but it also has

several de�ciencies as I shall describe.

� state: Does the host selection facility retain state about past assignments? Main-

taining a history of previous assignments may be useful to take advantage of warm

�le caches, and it is also necessary for reclaiming hosts due to fairness considerations.

Host selection facilities have been discussed in detail in the literature. Most or all of

them use server-based approaches, because they were designed for systems without a shared

6.3. HOST SELECTION MECHANISM 63

�le system. For example, Zhou compared several algorithms for load balancing, including a

centralized server, a broadcast-based distributed system, and a hybrid system in which each

host sends its load to a central coordinator, which periodically broadcasts the load of every

host in a single message [Zho87]. Theimer and Lantz compared implementations of a cen-

tralized server and a distributed request-response protocol using multicast (which permits

one message to be sent to many recipients without an undue burden on hosts not receiving

the message) [TL88]. They found that a centralized server can service thousands of clients

e�ciently if status update messages are limited to idle hosts, whereas a distributed imple-

mentation using broadcast or multicast results in a high demand for network bandwidth

that would limit a system to a few hundred hosts. Also, in their implementations of decen-

tralized and centralized scheduling, decentralized scheduling took two to four times longer

than centralized scheduling, though it was still \acceptably short". Their overall conclusion

emphasized simplicity over scalability and performance, however: with the availability of

e�cient multicast, they believed a decentralized design is simpler than a centralized one.

However, much of the past work on host selection is only partially applicable to the

Sprite environment. In our environment, host selection operations are less frequent than

they would be in a system that dynamically migrates processes continually to balance load;

no multicast is available; and we have a shared network-wide �le system. Sprite is of

course not alone in these respects. For example, Butler used a shared �le to store the

state about each host; later, for improved performance, Nichols changed Butler to use a

centralized process [Nic90]. Condor also uses a centralized process to control access to idle

hosts [LLM88]. This thesis supports Nichols's and Litzkow's conclusions with respect to

centralization, as well as examining additional issues such as fair allocation of hosts.

In this section I compare four host selection architectures using the criteria listed above.

The �rst three are implemented in Sprite, and the descriptions of these architectures focus

on the Sprite implementations. First, Section 6.3.1 describes a way to use a shared �le to

store information about each host. Processes make their own determination of what hosts

are available by reading the �le to obtain the status of each host. Second, Section 6.3.2

demonstrates how a centralized server process improves upon the shared �le approach in

most respects except simplicity. It is particularly appropriate for addressing any need for

globally fair host allocation. Third, Section 6.3.3 considers techniques that distribute host

information across multiple hosts to avoid processor contention and increase reliability.

Finally, Section 6.3.4 describes a stateless mechanism that uses multicast to send requests

for hosts, and then selects from those hosts that respond �rst [The86, TL88]. Table 6.2

summarizes the characteristics of each architecture.

6.3.1 Shared File

If host selection is performed using a shared �le, then the information about host availability

is centralized but selection decisions are distributed. With this technique, each host runs

a daemon process that keeps track of the characteristics of its own host and stores that

information in the shared �le. This organization is depicted in Figure 6.1. The information

64 CHAPTER 6. HOST SELECTION

Name Centralized? Message or File? Retains State?

Shared �le yes �le yes

Central server yes messages yes

Distributed servers no messages some

Multicast request no messages no

Table 6.2: Architectures for host selection.

must be updated any time important data in it changes (for example, if a host becomes

idle after being active or vice-versa). By associating a time-stamp with the information for

each host, and updating the information periodically even if it has not changed, processes

reading the data can detect out-of-date data.

Sprite initially used the shared �le approach to select hosts. With this implementation,

each record in the shared �le is �xed in length and consists of ASCII characters separated

by spaces. A record contains the following �elds:

� an identi�er for the host associated with the record,

� the host's average load, over periods of 5{15 minutes,

� the time the host last rebooted,

� the time the record was last updated,

� the time since the host last had interactive input,

� an indication of whether the host will accept foreign processes,

� the number of applications assigned to the host (either 0 or 1 in the �le-based imple-

mentation, which did not support multiple priorities of requests), and

� the version number of the host's migration facility.

With this information, each requesting process can perform host selection decisions individ-

ually. A process reads the �le and �nds all hosts with that are accepting foreign processes

and are not already assigned. (It excludes any hosts with a di�erent migration version or

whose timestamp is old enough to suggest that the host is no longer running.) The process

selects an available host, then rewrites the �le to update the number of applications using

the host.

The shared �le approach has the advantage of being extremely simple. It uses existing

facilities in the �le system to provide synchronization: a process will lock the �le while it

accesses it in order to serialize operations on it. Existing facilities also provide recovery

in the face of host failures. If the host that stores the �le fails, the shared �le becomes

6.3. HOST SELECTION MECHANISM 65

larceny

kvetching

Host

treason

idle

active

Status

active
(etc.)

Figure 6.1: Host selection using a shared �le. Daemons on each host use normal �le system

operations to update their state periodically in a �le.

unavailable, but much of the Sprite �le system also becomes unavailable so the temporary

loss of the host information database does not additionally a�ect operation. When the host

returns to normal operation, the operating system on each host will recover state about the

shared �le and permit processes to continue to access it as before. If another machine fails

while accessing the �le (i.e., while the �le is locked), standard �le system procedures ensure

that the host's failure does not a�ect future access to the �le.

Note that if the �le system supports replicated �les, then the failure of a single host

will not make the host availability database unavailable. The host selection facility could

be made much more reliable by storing data redundantly, but the cost of updating the data

during normal operation would be commensurately higher. On the other hand, there would

be no additional implementation complexity within the host selection facility to support

replication, since the �le system would provide the underlying mechanism. With respect

to reliability, a shared �le in a replicated �le system might then compare favorably to a

replicated, distributed server-based architecture (described below in Section 6.3.3).

Because of its simplicity, the shared �le approach also has a number of disadvantages.

Its greatest problem is the number of network communications required for operations such

as host selection. Each of the following operations within the �le system requires a remote-

procedure-call:

1. The process opens the �le containing host information.

2. The process locks the �le to prevent other processes from accessing it simultaneously.

66 CHAPTER 6. HOST SELECTION

3. The process reads the �le to obtain the host information. This operation can poten-

tially require multiple network transmissions since the �le may be large (in Sprite,

each host entry in the �le is 169 bytes, so a maximum of 8 records can �t in one

1500-byte Ethernet packet).

4. The process selects an idle host and writes the �le to ag that host as in-use.

5. The process unlocks the �le.

6. The process closes the �le.

7. After �nishing with the host, the process opens the �le,

8. locks it,

9. writes it to indicate the host is available,

10. unlocks it, and �nally

11. closes it.

The total number of �le system operations necessary to select and release a single host is

thus 11, including 10 \small" RPC's (transferring 100-200 bytes at most) and one or more

\large" RPC's (transferring several Kbytes). If a process selects multiple hosts, then it can

open and close the �le only once during that time, and it can potentially obtain multiple

hosts with a single read operation. Each independent request within the same process still

must start with locking the �le and conclude with unlocking it. Similarly, con�rming that

a host is idle before migrating a new process onto it requires that a process lock the �le,

read a single record, and unlock the �le.

The shared �le approach has other disadvantages in addition to performance. It is used

by unprivileged processes, so it must be made readable and writable by all users. Also, even

if the shared �le contained enough state for an application to determine that a host should

be reclaimed from another process, the application would have no capability to reclaim the

host itself. Finally, the shared �le approach requires explicit deallocation of hosts when

they are no longer used by an application, so the abnormal termination of a program using

idle hosts can leave a host marked as in-use for a prolonged period of time.

In order to address the disadvantages of using a shared �le, one can store host availability

data in the memory of a process rather than a �le. The next subsection describes the

implementation of a centralized process-based host selection facility in Sprite.

6.3.2 Central Server

The current host selection facility in Sprite uses a centralized server process to store host

availability data in memory. As with the shared �le approach, a daemon on each host

periodically updates information in a centralized location, but the updates are sent to a

6.3. HOST SELECTION MECHANISM 67

Host Status
larceny idle 0

kvetching active 2

Using

treason active 4

(etc.)

Figure 6.2: Host selection using a central server . Daemons on each host send updates to a

process on one host. The state of each host is stored in the memory of the process. The process

assigns hosts to processes based on the state of each host, including outstanding allocations of hosts

to processes on other hosts. In this example, processes on \treason" are using 4 idle hosts, so one

of those 4 hosts could be reclaimed if a process on another host requested an idle host and no more

hosts were available.

process rather than stored directly in the �le system. This approach is shown in Figure 6.2.

In some respects, using a centralized process shares the simplicity of the shared �le approach:

all the information is current, and each host need only communicate with one other host.

The primary distinction between the two approaches is that the protocol for requesting a

host from the central server requires fewer network communications.

1. The process initiates communication with the central server. In Sprite, this opera-

tion is performed using the �le system: the process opens a special �le, known as a

pseudo-device [WO88], and the operating system passes the open operation on to the

server. Communication using a reliable stream protocol, such as TCP/IP, is another

possibility.

2. The process requests one or more hosts. In Sprite, the request takes the form of a �le

system kernel call, ioctl , but other forms of communication (e.g., read/write, UDP/IP,

or RPC) would be appropriate.

3. After �nishing with the host, the process returns the hosts to the pool of idle hosts,

and

68 CHAPTER 6. HOST SELECTION

4. closes its communication channel. Note that hosts are returned implicitly if commu-

nication is terminated while hosts are still assigned to the process. Only if a process

wishes to retain some hosts while releasing others must it explicitly communicate with

the server to return hosts.

In Sprite, the total number of �le system operations necessary to select and release a single

host using the central-server approach is 3: one to open the pseudo-device, one to send the

request for a host, and one to release the host or close the pseudo-device. The open �le

system call would typically require two RPC's, one to resolve the name corresponding to

the pseudo-device and one to contact the I/O server for the server. None of the RPC's

transfer an especially large amount of data: the largest would be the pathname for the

pseudo-device. On average, host selection by a single Sprite process using a central server

and pseudo-devices takes 22 milliseconds on a SPARCstation 1 workstation.

2

The central

server can support a maximum of 67 request/return pairs per second when multiple hosts

make requests in parallel, during which time the processor on the host running the server

is 99% utilized.

A centralized server has other advantages over a shared �le besides performance and

scalability. Using the connection-oriented protocol described above, the server can detect

when a process that is communicating with it terminates. It can then free the hosts that

process was using if the process had not already explicitly released them. Note, however,

that the overhead of establishing and terminating the connection is signi�cant; a connec-

tionless protocol would require fewer network operations to request and release an idle host,

though detecting a defunct application would be more di�cult.

Another advantage of a centralized server is that it can communicate asynchronously

with processes that are using idle hosts. The server can inform a process that a host it was

using is no longer available, either because of eviction or because the host was reclaimed

due to fairness considerations. It can also notify the process when a new host becomes

available. In a message-based system, the server would just send a message to the process;

in Sprite, a more complicated approach is necessary. Processes communicate with the

central server using the ioctl kernel call, but performing an ioctl when no change in status

has occurred would generate needless overhead (in particular, a context switch to execute

the central server). A select kernel call, on the other hand, can ask the kernel whether a

stream is readable, and does not require any interaction with the server. (In the current

implementation, select does require a kernel-to-kernel RPC to the I/O server for a �le or

pseudo-device; in principle, even the RPC could be avoided by having the I/O server notify

the user's kernel once a stream becomes readable.) Thus, to notify a process of a change in

status, the server makes the process's stream readable. The next select kernel call by the

process will indicate that a change is pending, at which point it performs an ioctl kernel

2

Note that it is not possible to compare the central server and shared-�le approaches using the same

con�guration, since the shared �le implementation in Sprite has been decommissioned. The time to select

and release an idle host using DECstation 3100 workstations was measured to be 56 milliseconds. [DO91].

6.3. HOST SELECTION MECHANISM 69

call to obtain the data from the server. Normally, no changes are pending and the stream

is not readable, so no network operations should be needed.

However, centralizing host selection in one process has two potential disadvantages as

well: it makes the server a single point of failure, and it loads down the host on which the

server executes. In addition, a centralized process may not scale well if a connection-oriented

protocol is used. The remainder of this section discusses these issues.

Reliability

In the case of a shared �le approach, the failure of the �le server storing the �le can disable

access to the host availability database. A central server is similarly vulnerable to the failure

of the host on which the process runs, and it is also vulnerable to software faults in the

server process itself. Theimer and Lantz noted that there are two reasonable alternatives

for making host selection tolerate failures [TL88]. The facility can be replicated, so that

one failure does not disable the facility, or the facility can be restarted as soon as its failure

is detected.

Replication requires additional complexity and run-time overhead, and is discussed be-

low in the context of distributed servers. If the host selection facility need not be constantly

available, though, it is simpler and cheaper to recreate it after a failure. Nevertheless, the

\reinstantiation" approach has potential problems that must be addressed:

� A process must notice that the server has become unavailable and then create a new

one. If many processes notice simultaneously, they may compete for the opportunity

to create the replacement. Sprite addresses the problem of contention in three ways.

First, the load average daemon on each host monitors the state of the central server.

If a daemon detects that the server has failed, it waits a random period of time,

and then attempts to create a new instance of the server if the server has not yet

been reinstantiated. Second, the �le system provides automatic mutual exclusion, so

that only one process can manage the �le system object (pseudo-device) that other

processes use to interact with the server. Third, the server periodically checks whether

another process has inadvertently removed and recreated the pseudo-device; if so, the

server exits and permits the later instantiation to control host selection instead.

� The state maintained by the old server is lost. The new server will not know about

outstanding host assignments, nor will it know about the state of each host. The

daemons running on each host must therefore communicate with the new server to

restore its state.

� Using a connection-oriented protocol, such as Sprite's, processes with connections to

the old server will encounter error conditions when they try to communicate with it.

They, too, will need to initiate new sessions with the new server. Since interactions

with the server are hidden behind a library interface, connections are reopened auto-

70 CHAPTER 6. HOST SELECTION

matically when an error occurs. An application that uses the host selection facility

need not be aware of the error condition.

Load

The other potential disadvantage of using a centralized server is the load it imposes on its

host. Theimer and Lantz considered a system in which the server runs only on idle hosts,

and migrates (or is recreated) when the host on which it executes becomes unavailable. In

that case, resource utilization is unimportant as long as the processing power of the host

is su�cient for the server to respond to all update messages from the per-host daemons

and all requests to obtain or return idle hosts. Though restricting the central server to run

on an idle host is certainly feasible, it is an unnecessary requirement if the processor and

memory requirements of the server are minimal enough not to impact the response of active

users on the same host.

As was mentioned above, the server's processor can be completely utilized if it receives

a steady stream of requests for hosts. Since applications cache host assignments to reuse

the same idle host repeatedly, however, the actual rate of requests is currently quite low

(3.25 requests per minute). This point is discussed further in Section 8.5.

Scalability

Using a connection-based protocol, the centralized server must store on-going state about

every process that communicates with it. One may wonder how the accumulated state per

open connection a�ects the scalability of the centralized server. In the Sprite implementa-

tion, the limits on scalability arise not from the state maintained by the server, but from

the state maintained by the operating system for open pseudo-device connections. The

size of the state stored by the Sprite central migration server for each open connection is

96 bytes. Since this state is stored in virtual memory, the host could handle thousands

of client processes (and per-host load average daemons) with no adverse e�ects. However,

the operating system stores an I/O handle for each outstanding process as well. Each I/O

handle is 100{200 bytes and is stored in physical memory. If kernel memory proves to be

too valuable a resource to permit long-term pseudo-device connections to the host selection

server, then a connectionless protocol will be required.

6.3.3 Distributed Servers

In order to avoid the potential problems of a centralized host selection facility with respect

to availability and processing requirements, the facility can be distributed among multi-

ple hosts. There are two approaches toward distributed host selection: \advertising" and

\query-based." With advertising, each idle host periodically updates its state on each of

the hosts running the host selection facility, much as is done with a single central server.

6.3. HOST SELECTION MECHANISM 71

(etc.)

Host

larceny idle

kvetching active

Status

treason active

Host

larceny idle

kvetching idle

Status

treason active

larceny

kvetching

Host

treason

idle

active

Status

active

larceny

kvetching

Host

treason

idle

active

Status

active

larceny

kvetching

Host

treason

idle

active

Status

active

larceny

kvetching

Host

treason

idle

active

Status

active

(etc.)

Figure 6.3: Host selection using multiple servers. Servers on some or all of the hosts keep track of

the state of other hosts. The distributed approach addresses some of problems the centralized-server

approach, such as fault tolerance and scalability, but keeping the state of the system consistent

across di�erent servers is di�cult. For example, one host might think the host \kvetching" is idle

while another thinks it is active.

With a query-based approach, a host with processes to o�oad sends a multicast (or broad-

cast) message requesting idle hosts, and hosts that are available respond directly to the

requesting host. In either approach, there is no central point of failure and no single host

that must service large numbers of requests; however, other issues arise, such as the need

to keep state consistent on multiple hosts. This section discusses the advertising approach,

and Section 6.3.4 considers query-based host selection.

Using the advertising approach, the host selection facility can run on some or all hosts. If

a host selection server runs on every host, then processes can obtain idle hosts by contacting

the server on their own host. If a host later fails, its host selection server can be restarted

when the host reboots. However, software failures must still be detected, so that a server

can be restarted even when its host has not rebooted. If not all hosts run a server to

keep track of host availability, then the system must provide a mechanism for processes to

contact an appropriate server, as well as a provision for replacing failed servers.

Regardless of how many hosts run host selection servers, two problems arise. First, if

servers on di�erent hosts execute independently, then they may have inconsistent or out-

dated views of the state of the system as a whole. (This situation is shown in Figure 6.3.)

When a server on one host allocates a host, how do other servers determine that the host has

been allocated? If a host is returned to the pool of idle hosts, how quickly do servers learn

72 CHAPTER 6. HOST SELECTION

that the host is available? In the former case, an application may attempt to migrate to a

host that has already been claimed; in the latter, the application might miss an opportunity

to use an idle host. It may also be di�cult to ensure that hosts are allocated fairly, since

decentralized control suggests that no one server knows the exact state of the entire system

at a given time.

The second potential problem of distributed servers is processing overhead. Consider

a system of several hundred hosts, with hosts updating their state an average of once per

minute. Assuming service times on the order of a few milliseconds, the processor overhead

of servicing update messages would be about 1% per hundred hosts. The overhead of

processing requests and keeping information among servers consistent would add to that

cost. Thus, the processing overhead of the entire host selection facility might be on the

order of 5% of processing capacity. Theimer and Lantz note that this cost greatly detracts

from the desirability of having all hosts perform their own scheduling decisions, since even

busy hosts must pay the cost of processing incoming update messages [TL88].

Two variations on the distributed approach address these problems. With probabilistic

host selection, each host periodically updates state on a random subset of other hosts. This

method, used in MOSIX [BSW89, BS85], reduces overhead but still su�ers from distributed

state. Another possible approach is a replicated fault-tolerant facility that would run on

only a few unloaded hosts, such as the facility currently being implemented in the ISIS

system [Bir85, Coo90]. The remainder of this section describes these two alternatives.

Probabilistic Host Selection

Barak and Shiloh described a distributed host selection facility for MOS (later MOSIX)

that used a probabilistic algorithm to disseminate host information [BS85]. Each host kept

track of the most recent information it had about other hosts. In order to avoid using

obsolete information, a host would \age" old data as newer data arrived, thus giving more

weight to recent data than to old data. At regular intervals, each host would randomly

select another host and send that host its own load as well as the newest information it had

received about other hosts.

The original mechanism for MOSIX su�ered from a propagation delay that resulted from

indirect data. It would take several propagations for a substantial change in a host's load

to become apparent to all other hosts. MOSIX currently propagates load information by

exchanging data directly with other hosts: a host selects three another hosts, sends its load

data to those hosts, and obtains the load of those other hosts in return. Loads are exchanged

once per second in order to ensure that hosts have fairly recent information about all other

hosts. The value of a host's load is arti�cially modi�ed to include anticipated uctuations

due to migration [BSW89]. However, substantial changes in the load of a host still take

several seconds to propagate to other hosts, and in the meantime hosts with obsolete load

information may attempt to migrate onto a loaded host.

Stolcke and von Eicken [SvE89] built a distributed host selection facility for Sprite based

6.3. HOST SELECTION MECHANISM 73

on the original MOSIX model. They then compared their distributed probabilistic facility

with the shared �le approach that was used in Sprite at the time. They found that by

using their facility, the service time for requests for idle hosts remained relatively constant,

regardless of the overall rate of requests throughout the system. On the other hand, the

shared �le was a signi�cant bottleneck when idle hosts were requested rapidly on many

hosts simultaneously. The centralized server process is a similar bottleneck, as mentioned

above.

The probabilistic approach reduces contention for processing time under periods of high

load, but it also su�ers more from incomplete knowledge under those conditions than during

periods of low load. Each host would likely have an outdated view of the state of other

hosts, and a high rate of requests would cause those states to uctuate rapidly. As a result,

a host servicing a request might have no knowledge of the availability of a host whose load

had just dropped. Furthermore, since no host has complete knowledge of the state of the

system, it is di�cult for any one host to make decisions that a�ect overall state.

Replicated, Fault-tolerant Servers

There are two problems with the distributed host selection facilities described above: no

single server has complete knowledge of the system, and loaded hosts must process update

messages to know the state of other hosts. Limiting the host selection facility to a small

number of lightly loaded hosts would address the latter problem but not the former. In

addition, if processes do not simply request idle hosts from a server on their own host, they

need a mechanism for locating a server. A system such as ISIS [Bir85], which provides

support for replicated fault-tolerant applications, can address these issues.

ISIS permits a distributed facility to be logically centralized, yet composed of fault-

tolerant components executing on multiple hosts. A logically centralized facility would

have current knowledge of the state of all hosts and any outstanding host assignments,

so it could make accurate decisions regarding the availability of hosts and the fairness of

existing allocations. Since each process would react to each message, this facility would

have essentially the same performance characteristics as the physically centralized server

described in Section 6.3.2. A prototype host selection facility using ISIS is currently being

developed at Cornell University [Coo90].

6.3.4 Multicast Requests

Another way to address the problems of a centralized repository for host information,

namely processor contention and reliability, is to have no repository at all. Instead of

having hosts announce their state in advance, they respond to requests for idle hosts if they

are available. Querying hosts individually is not feasible, because the latency to �nd an idle

host that is not already in use could be substantial. Instead, using multicast, a process can

send a single message and only those hosts that wish to receive it can do so. If more than

one host responds, the querying process can select from among the responders. Later, to

74 CHAPTER 6. HOST SELECTION

(a) Request

requesting
host

(b) Responses

requesting
host

Figure 6.4: Query-based host selection using multicast. Figure (a) shows a host sending a request

to all other hosts. In (b), those hosts that receive the request and choose to respond send back a

message to indicate their availability. The requesting host selects from those hosts that respond.

reuse a host, the process would contact the host directly to obtain its current status. The

query-based approach is demonstrated in Figure 6.4.

Host selection using the \querying" approach is completely distributed and is una�ected

by the failure of any subset of hosts. The greatest problem with this approach is the number

of messages generated by each request when many hosts are available. Since each request

can result in as many responses as there are hosts, the network may become temporarily

saturated by responses. Theimer and Lantz estimated that a decentralized facility based

on this design scales to at most a few hundred hosts, while a centralized architecture using

stateless communication could handle thousands of hosts [TL88].

A second problem with the querying approach is that there is no global information

about the state of the system or previous host assignments. In particular, Theimer and

Lantz noted that the decentralized approach does not consider global fairness, which can

become an issue if more \long-running and/or massively parallel applications become more

prevalent." As my measurements in Chapter 8 show, long-running applications are be-

coming common in Sprite, as are applications whose parallelism is constrained only by the

availability of idle hosts.

6.4. SUMMARY 75

6.4 Summary

The most important aspects of host selection are the policy for choosing among available

hosts and the mechanism for assigning hosts to processes upon request. There are many

possible criteria for selecting one host over another: for example, idle time, load, and pre-

vious host assignments. There is a strong correlation between idle times and the likelihood

of eviction; since the cost of eviction is likely to outweigh the bene�ts of slight decreases in

load or of using warm caches, Sprite allocates hosts in decreasing order of idle time.

The goals of a host selection mechanism include performance, reliability, scalability,

fairness, and simplicity. Global fairness is an important aspect of load sharing in any

environment in which long-running processes are common. Fairness is also one of the most

di�cult goals to address, and most existing host selection facilities have not considered

fairness to be a compelling issue.

With those goals in mind, I considered several approaches to host selection, varying

along a number of parameters. The two simplest approaches, a shared-�le repository and

no repository at all, are inadequate: the former has poor performance, as well as insu�cient

security, and the latter does not scale and does not ensure fair allocation of hosts. Proba-

bilistic host selection scales well with respect to performance, but it allocates hosts using

incomplete information and has no global state. A centralized architecture is relatively

simple and is easy to reinstantiate in the case of failure. It is appropriate for addressing

the issue of global fairness, and it provides adequate performance unless requests are made

extremely frequently. For these reasons, the centralized facility described in Section 6.3.2 is

currently used in Sprite. However, if better fault tolerance is needed, a replicated, logically

centralized facility can improve the reliability of a centralized server while still allocating

hosts fairly.

The choice of a centralized or distributed host selection facility may ultimately be based

on the relative importance of global fairness and frequent host selection. Naturally, if

Sprite's host selection facility had to respond to more than 67 requests per second in normal

operation, a central server would be unable to satisfy demand. Any signi�cant fraction of

that demand would be too great to permit the host selection facility to run on a user's

workstation, for that matter. In practice, though, we have found that global fairness is

more important than avoiding a bottleneck on the server's processor. Chapter 8 reports

on the low average rate of requests for idle hosts and the high rate at which hosts have

been reclaimed due to fairness considerations. In recent months, as many hosts have been

reclaimed to reassign them to another application as to return them to their owners.

Chapter 7

Performance

7.1 Introduction

The performance of process migration depends on many factors, such as the availability of

idle hosts, the time to transfer a process, the overhead of supporting transparent remote

execution, and the frequency of evictions. This chapter reports the measured costs of

migration in Sprite and the performance improvement obtainable by typical applications,

and the next chapter reports empirical data on overall usage patterns and average costs in

day-to-day use.

Section 7.2 briey summarizes the implementation of process migration in Sprite and

its common usage.

In Section 7.3, I use a collection of \micro-benchmarks" to analyze the constituent costs

of migration in Sprite, such as the time to migrate a trivial process, transfer an open �le,

or select an idle host. These measurements collectively demonstrate that the overhead of

process migration is minimal.

In Section 7.4, I examine the e�ect of process migration on the performance of compila-

tions and simulations, which are the primary applications that use migration in Sprite. The

speedup obtained depends in large part on contention for system-wide resources such as

�le servers and the rate at which new processes are generated. For example, an application

that creates many processes that interact with a �le server and then exit can saturate both

the �le server and the host running the application. As a result, it obtains a speedup of

only 3{6 even when as many as 12 hosts are used in parallel. An application that creates a

small number of processes that execute for a relatively long time and do not compete for a

�le server can obtain much higher speedup.

Finally, Section 7.5 draws some conclusions based on the measurements presented in

this chapter.

76

7.2. IMPLEMENTATION SUMMARY 77

7.2 Implementation Summary

Process migration in Sprite is divided into two parts. Themechanism of migrating processes

between hosts and supporting transparent remote execution is summarized in Section 7.2.1.

The policy of selecting idle hosts and evicting processes when hosts are reclaimed is sum-

marized in Section 7.2.2.

7.2.1 Mechanism

Processes can migrate between hosts at any time. When a process migrates, much of its state

is transferred from the source of the migration to the target machine. The state transferred

includes open �les (requiring that modi�ed data blocks in the cache of the source be ushed

to their I/O server), signal handlers, identi�ers, and other state that depends on the type of

migration. If the process migrates at an arbitrary point, its modi�ed virtual memory pages

are written to a shared backing store, and the process demand pages its memory image

after migration. More frequently, a migrates in conjunction with the exec kernel call. With

Exec-time migration (also known as remote invocation), the process's execution image is

completely replaced, and no virtual memory is transferred. However, the arguments to the

program invoked are transferred to the target, as are the process's environment variables.

No matter where a process physically executes, it behaves as though it executes on a

single host throughout its lifetime. That host, known as its home machine, is where it

would execute in the absence of migration. To support transparent remote execution, a few

location-dependent system calls are forwarded from the kernel of a remote process to the

kernel of its home machine. Some calls, such as fork , are processed by both the remote host

and the home machine. Operations upon the process, such as signals, are forwarded from

the home machine to the process's current location.

7.2.2 Policy

Policy in Sprite is managed by cooperation between a central server and application pro-

grams (pmake, in particular). The central server keeps track of idle hosts and assigns a

host to one application at a time. Application programs open a connection to the server,

request one or more hosts, migrate processes onto the hosts, and return the hosts to the

pool of idle hosts once they are no longer needed.

If a user returns to a host that is running foreign processes, a load-average daemon on

the host evicts the foreign processes, migrating them back to their home machine. The

daemon noti�es the central server that its host is no longer available. The central server,

in turn, noti�es the process that had been assigned the host. That process can permit the

evicted processes to run on the home machine, remigrate them to another idle machine, or

suspend them.

If one application uses more than its fair share of idle hosts, the central server can

78 CHAPTER 7. PERFORMANCE

reclaim some of the hosts used by the application. In that case, foreign processes on the

host are evicted, just as if the user returned.

If a host is reclaimed, or a new host becomes available, the central server noti�es any

a�ected processes. The noti�cation is performed in two stages. First, the server makes

the processes' streams readable. When a later select kernel call indicates that a stream

to the server is readable, an application process performs an ioctl kernel call to obtain

the information from the central server. Application processes are expected to perform

the select call before reusing an idle host for repeated migrations. Pmake also uses the

noti�cation mechanism to learn of evictions and remigrate or suspend evicted processes.

7.3 Constituent Costs

The overhead of performing process migration may be broken down into three parts: host

selection, state transfer, and forwarding of kernel calls. Host selection occurs prior to migra-

tion, state transfer occurs as part of migration, and system calls are forwarded subsequent

to migration when a process moves to a remote host and executes location-dependent kernel

calls. State transfer is the most costly aspect of migration. It consists of �xed overhead to

transfer data such as process identi�ers and to allocate and initialize a new process, as well

as the additional time necessary to transfer open �les; if the migration is not performed

at exec-time, then virtual memory must be transferred as well. Though the costs of host

selection and forwarded kernel calls do not typically a�ect execution time to a large extent,

either can be costly if performed frequently. The remainder of this section discusses each

of the component costs in detail.

7.3.1 Host Selection

The cost of host selection in Sprite consists of several components: the time to open a

connection to the central server process, the time to select one or more hosts, the time to

con�rm that hosts are available before reusing them, and the time to return hosts to the

pool of idle hosts. In the normal mode of operation, a process will establish a connection

once and request a number of hosts before closing the connection (implicitly returning the

hosts). If it reuses the same host for multiple remote invocations over time, the application

is expected to con�rm that the host is still available each time it uses the host. As described

in the previous chapter, checking the availability of a host requires only that the application

perform a select kernel call, which indicates whether the central server has a information

for the application about a host's changing state. (Note that the application relies on

the central server for update messages, rather than communicating directly with the host

being used; this is due to the separation between the migration mechanism, implemented

by kernels, and the load sharing policy, implemented by the central migration server.)

On SPARCstation 1 workstations running Sprite, the cost of communication with the

central server is dominated by overhead for �le system lookups and pseudo-device commu-

7.3. CONSTITUENT COSTS 79

Action

Time

(milliseconds)

Open connection to server 20

Obtain one host 11

Close connection to server 5

Total 36

Obtain N hosts one at a time (25 + 11N)

Obtain N hosts with one request (36 + 0.1(N � 1))

Con�rm that a host is available 2

Table 7.1: Costs of host selection. All measurements are the average of 1000 iterations, performed

on SPARCstation 1 workstations. The total time to initiate a connection and select a single host

corresponds to the worst case of host usage, when the full protocol is required for each migration.

The start-up overhead may be amortized across multiple requests or by requesting multiple hosts in

a single operation.

nication. Opening a �le takes about 6 milliseconds if the I/O server of the �le is the same as

its name server; for the pseudo-device for the migration server, an additional 5 milliseconds

are necessary to contact the host running the server, plus about 5 milliseconds to copy data

into the migration server's address space and context-switch the server to make it runnable.

The total cost of contacting the central server is 20 milliseconds, of which roughly one-fourth

is due to network communication costs and three-fourths are due to processing overhead

(roughly 150,000 instructions assuming a 10 MIPS machine).

Once the server has been contacted, it takes 11 milliseconds to obtain a single host (of

which about 5 milliseconds is due to network communication and pseudo-device overhead),

plus approximately 100 microseconds per additional host requested at the same time. It

takes 2 milliseconds to con�rm that a host is available; as mentioned earlier, this time

could be reduced to a few hundred microseconds if the select call were modi�ed not to

require a remote procedure call. It takes 11 milliseconds to return a host explicitly via a

pseudo-device communication, or 5 milliseconds to return outstanding hosts by closing the

communication channel completely. These measurements are summarized in Table 7.1.

7.3.2 State Transfer

In Section 4.2, I described the mechanism used to transfer processes in Sprite. To sum-

marize, migration consists of transferring a �xed amount of state plus a variable amount

of state that depends on the migrating process. The state that must be transferred with

all processes includes the process's current working directory and a number of �elds from

the process control block. The variable state includes open �le streams as well as modi�ed

blocks for open �les. It also includes virtual memory for processes that do not migrate at

80 CHAPTER 7. PERFORMANCE

Action Time/Rate

Migrate null process 76 milliseconds

Transfer info for open �les 9.4 milliseconds/�le

Flush modi�ed �le blocks 480 Kbytes/second

Flush modi�ed pages 660 Kbytes/second

Transfer exec arguments 480 Kbytes/second

Fork , exec null process with migration, wait for child to exit 81 milliseconds

Fork , exec null process locally, wait for child to exit 46 milliseconds

Table 7.2: Costs associated with transferring processes. All measurements were performed on

SPARCstation 1 workstations. The time to migrate a process depends on how many open �les

the process has and how many modi�ed blocks for those �les are cached locally (these must be

ushed to the server). If the migration is not done at exec-time, modi�ed virtual memory pages

must be ushed as well. If done at exec-time, the process's arguments and environment variables

are transferred. The bandwidth of the RPC system is 480 Kbytes/second using a single channel,

and 660 Kbytes/second using multiple RPC connections in parallel for the virtual memory system.

exec-time. At exec-time, the state includes the name of the �le being execed, the arguments

to the program, and the environment variables passed to the program.

Table 7.2 lists the costs associated with transferring processes. If a process had no open

�les, it would take about 100 milliseconds to select an idle host, start a trivial process on

it, and wait for the process to exit.

1

In practice, the average time for exec-time migration

is between 200 and 300 milliseconds, due to the extra time to transfer �les and set up the

process's stack with multiple command arguments and environment variables. (Refer to

Chapter 8 for empirical data.) By comparison, it takes under 50 milliseconds to invoke a

command locally. Note that even if the latency of remote invocation is �ve times as much

as local invocation, it is quite small by comparison to the time needed to compile a small

source �le or run a simulation.

7.3.3 Forwarding Kernel Calls

After a process migrates away from its home machine, it may su�er from the overhead of

forwarding kernel calls. The degradation due to remote execution depends on the ratio

of location-dependent system calls to other operations, such as computation and �le I/O.

Figure 7.1 shows the total execution time to run several programs, listed in Table 7.3,

both entirely locally and entirely on a single remote host. Applications that communicate

1

Nearly all this time is processing overhead. Migration requires only three RPC's, two of which transfer

little data and the third of which transfers only a few Kbytes. Starting a process requires extra RPC's to

open the execed �le, and an RPC is needed when the process exits. The remaining cost is due to processing.

7.3. CONSTITUENT COSTS 81

Time (seconds)

remotelocal

Benchmark

170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

gettimeforkrcpLaTeXpmake

Figure 7.1: Comparison between local and remote execution of programs. The elapsed time to

execute CPU-intensive and �le-intensive applications such as pmake and L

a

T

E

X showed negligible

e�ects from remote execution (3% and 1% degradation, respectively). Other applications su�ered

performance penalties ranging from 42% (rcp), to 73% (fork), to 3200% (gettime).

Name Description

pmake recompile pmake source on a single host using pmake

L

a

T

E

X

run L

a

T

E

X on a draft of a 15,000-line paper

([DO91])

rcp copy a 1 Mbyte �le to another host using TCP

fork fork and wait for child, 1000 times

gettime get the time of day 10000 times

Table 7.3: Workload for comparisons between local and remote execution.

82 CHAPTER 7. PERFORMANCE

frequently with the home machine su�ered considerable degradation. Two of the bench-

marks, fork and gettime, are contrived examples of the type of degradation a process might

experience if it performed many location-dependent system calls without much user-level

computation. The rcp benchmark is a more realistic example of the penalties processes

can encounter: it copies data using TCP, and TCP operations are sent to a user-level TCP

server on the home machine. Forwarding these TCP operations causes rcp to perform about

40% more slowly when run remotely than locally. As may be seen in Figure 7.1, however,

applications such as compilations and text formatting show little degradation due to remote

execution.

7.4 Application performance

The benchmarks in Section 7.3 measure the component costs of migration. This section

evaluates the overall bene�ts of load sharing using migration. In Section 7.4.1 I present

measurements of typical compilations using pmake. I demonstrate that parts of pmake's

execution are inherently sequential, limiting the bene�ts of parallel compilation. Despite

this limitation, migration typically speeds up compilations by factors of three to six.

Section 7.4.2 discusses additional factors that limit the performance improvement of

compilations using migration. Using several hosts, pmake can saturate the processors of

both a Sun-4/280 �le server and the SPARCstation 1 workstation running pmake, and is

within a factor of two of saturating a 10 megabits/second Ethernet. Even considering only

the parallelizable portion of pmake's execution, using twelve hosts in parallel produced only

a speedup of �ve. Over the entire compilation, pmake used processing time equivalent to

three processors working at 100% capacity.

Section 7.4.3 compares CPU-intensive applications, such as simulations, to applications

that interact heavily with the �le system, such as compilations. The e�ective processor

utilization of a sample set of 100 independent (parallelizable) simulations was over 800%,

compared to 300% for the 12-way parallel compilation mentioned above.

7.4.1 Representative Pmake Performance

The pmake program, like make [Fel79], generates a dependency graph from its input speci-

�cation, determines which �les are out-of-date, and recreates each out-of-date �le (or \tar-

get"). Unlike make, it can �nd disjoint dependency subgraphs and recreate independent

targets in parallel. When an out-of-date target depends on multiple inputs, pmake waits

until all of the inputs are up-to-date before executing the commands to create the target.

Figure 7.2 shows an example of pmake's execution. A single pmake process parses

dependencies and obtains the times at which each relevant �le was last modi�ed. In this

example, pmake then creates two object �les in parallel, and �nally a single process uses the

object �les to link together a program. Obviously, the speedup that pmake can obtain due

to load sharing depends in large part on the amount of work that can be done in parallel

7.4. APPLICATION PERFORMANCE 83

Parse Dependencies

foo

foo.h

foo.o bar.o

foo.c bar.c
stdio.h

Recreate Out-of-date Intermediate Targets

Find Out-of-date Files

(foo, foo.o, bar.o)

cc -c foo.c cc -c bar.c

cc -o foo foo.o bar.o

Recreate Final Target

Sequential Execution

Parallel Execution

Sequential Execution

Figure 7.2: Sample of pmake execution. Pmake has one or more sequential phases, and one or

more phases containing tasks that may be performed in parallel. In this example, pmake determines

that foo.o and bar.o can be recreated in parallel, and then the two of them serve as inputs to the

�nal step of the compilation.

by comparison to the work that is done by a single process. As \Amdahl's Law" suggests,

by decreasing the time required for the parallelizable portion of pmake's execution, the

sequential portion eventually dominates the total execution time [Amd67]. Therefore, the

greatest speedup is obtained when the sequential portion is a small fraction of the total

execution time.

The performance improvement due to load sharing also depends on the ability of the

application to execute e�ciently on many machines simultaneously. On the one hand, pmake

may be unable to keep processors busy; on the other, processors may become overutilized.

Ideally, doubling the number of machines executing an application should halve the time

needed to execute it. In practice, as the number of hosts increases beyond a small threshold,

the marginal improvement from using additional hosts decreases.

To measure the performance of pmake with load sharing, I compare the time needed to

compile di�erent sets of �les using a varying number of machines. The number of �les in each

set a�ects the maximum degree of parallelism attainable, while the number of machines can

84 CHAPTER 7. PERFORMANCE

Program Number of Avg. Lines Lookups Sequential Parallel

Speedup

Compiled Compiles Links per File per Sec. Time Time

pmake 49 3 433 62 162s 55 s 2.95

kernel 276 1 550 98 1971 453 4.35

gremlin 24 1 435 43 180 41 4.43

T

E

X 36 1 514 24 259 48 5.42

Table 7.4: Examples of pmake performance. Sequential execution is done on a single host; paral-

lel execution uses migration to execute up to 12 tasks in parallel. Each measurement gives the time

to compile the indicated number of �les and link the resulting object �les together in one or more

steps. Speedup is a�ected by inherent sequentiality that results from multiple link steps and check-

ing dependencies, as well as by the amount of processing performed by each remote invocation. The

amount of processing is partially determined by the code compiled by each remote invocation. Con-

tention for the �le server is greatly a�ected by the number of name lookups performed, as described

below. The table lists the rate at which the �le server performed name lookups during the sequential

compilation, which is indicative of the contention it experiences during parallel compilation.

further constrain the parallelism allowed. In addition, by varying the number of machines

used when many �les must be compiled, it is possible to measure the marginal improvement

from additional hosts.

Table 7.4 presents some examples of typical pmake speedups. These times are repre-

sentative of the performance improvements seen in day-to-day use. Figure 7.3 shows the

corresponding speedup curves for each set of compilations when the number of hosts used

varies from 1 to 12. In each case, the marginal improvement of additional hosts decreases

as more hosts are added. Table B.1 in Appendix B shows the detailed measurements of

speedup as a function of the number of hosts.

The relatively low speedup obtained for compiling the source for pmake demonstrates

the problem of keeping hosts busy. The program source is stored in a hierarchical structure

consisting of two subdirectories within another directory. To recompile pmake from scratch,

pmake recursively invokes two pmake processes sequentially, one per subdirectory. The �les

in each subdirectory are compiled and linked into a single object �le. The processing for

the second subdirectory cannot begin until the last �le in the �rst subdirectory has been

compiled and all the object �les from the �rst subdirectory have been linked together. In

the meantime, most of the hosts are idle.

7.4.2 Limiting Factors

The speedup factors obtained by the other benchmarks in Table 7.4 are determined by three

problems: inherent sequentiality, �le caching, and system bottlenecks. I analyzed the kernel

7.4. APPLICATION PERFORMANCE 85

gremlin

kernel

pmake

TeX

ideal

Number of hosts used

Speedup

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Figure 7.3: Speedup of compilations using a variable number of hosts. This graph shows the

speedup relative to running pmake on one host (i.e., without migration). The speedup obtained

depends on the extent that hosts can be kept busy, and the amount of parallelization available to

pmake. It also depends on system bottlenecks, as described below.

86 CHAPTER 7. PERFORMANCE

compilation, which is the largest benchmark in Table 7.4, to demonstrate these factors. In

this benchmark, pmake determines the dependencies for 276 source �les, compiles each �le,

and links the resulting object �les into a single �le. Figure 7.4 shows the total elapsed time

to compile and link the �les using a varying number of machines in parallel, as well as the

performance improvement obtained.

In Figure 7.4, the \compile and link" benchmark includes the time to determine �le

dependencies and link object �les together, which must be done on a single host; the

\normalized compile" benchmark considers only the parallelizable portion of the execution.

There are two reasons for the di�erence between the speedups obtained for the \normalized

compile" benchmark and the \compile and link" benchmark: sequential execution and �le

caching. First, for this benchmark, pmake takes 19 seconds to determine �le dependencies

(including performing kernel calls to obtain the �le attributes of every source �le, header

�le, and object �le), and 56 seconds to link the resulting object �les together. Even if

compiling the 276 source �les were instantaneous, pmake could not execute faster than that

without further changes to its structure.

Second, �le caching can a�ect speedup signi�cantly. As described above in Chapter 5,

when a host opens a �le for which another host is caching modi�ed blocks, the host with

the modi�ed blocks transfers them to the server that stores the �le. Thus, if pmake uses

many hosts to compile di�erent �les in parallel, and then a single host links the resulting

object �les together, that host must wait for each of the other hosts to ush the object �les

they created. It then must obtain the object �les from the server. In this case, linking the

�les together when they have all been created on a single host takes 56 seconds, but the link

step takes 65{69 seconds when multiple hosts are used for the compilations. (As a more

extreme example, in a similar benchmark compiling 139 source �les on DECstation 3100

workstations, a link step increased from 8 seconds on a single host to 20{35 seconds using

multiple hosts.)

System Bottlenecks

The speedup curves in Figure 7.3 and Figure 7.4(b) show that the marginal improvement

from using additional hosts is signi�cantly less than the processing power of the hosts

would suggest. In the kernel benchmark, pmake is able to make e�ective use of about

three-fourths of each host it uses up to a point (4-6 hosts), but it uses less than half the

processing power available to it once additional hosts are used. The poor improvement is

due to bottlenecks on both the �le server and the workstation running pmake. Figure 7.5

shows the utilization of the processors on the �le server and client workstation over 5-second

intervals during the 12-way kernel pmake. It shows that the pmake process uses nearly

100% of a SPARCstation processor while it determines dependencies and starts to migrate

processes to perform compilations. Then the Sun-4/280 �le server's processor becomes a

bottleneck as the 12 hosts performing compilations open �les and write back cached object

�les. The network utilization, also shown in Figure 7.5, averaged around 20% and is thus

not yet a problem. However, as the server and client processors get faster, the network may

7.4. APPLICATION PERFORMANCE 87

(b) Relative speedupSpeedup

Number of hosts used

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 4 6 8 10 12

compile and link

normalized compile

ideal speedup

Number of hosts used
2 4 6 8 101 12

compile and link
normalized compile

0

5

10

15

20

25

30

35

(a) Execution timesTime
(minutes)

Figure 7.4: Performance of recompiling the Sprite kernel using a varying number of hosts and the

pmake program. Graph (a) shows the time to compile all the input �les and then link the resulting

object �les into a single �le. In addition, it shows a \normalized" curve that shows the time taken

for the compilation only, deducting as well the pmake startup overhead of 19 seconds to determine

dependencies; this curve represents the parallelizable portion of the pmake benchmark. Graph (b)

shows the speedup obtained for each point in (a), which is the ratio between the time taken on a

single host and the time using multiple hosts in parallel.

88 CHAPTER 7. PERFORMANCE

Utilization, 12-way pmake of kernel

Time (seconds)

server utilization

client utilization

network utilization

Utilization (%)

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

Figure 7.5: Processor and network utilization during the 12-way pmake. Both the �le server and

the client workstation running pmake were saturated.

7.4. APPLICATION PERFORMANCE 89

Overall Utilization

server
workstation

Utilization (%)

0

10

20

30

40

50

60

70

80

90

100

Number of hosts used
1 2 4 6 8 10 12

network

Figure 7.6: Overall processor and network utilization as a function of hosts used. When only a

single host was used, it ran both the compilations and pmake, resulting in high utilization. When

multiple hosts were used, the workstation running pmake did not run compilations itself.

easily become the next bottleneck. Figure 7.6 graphs the overall processor and network

utilization for the kernel pmake as a function of the number of hosts, and Figure 7.7 plots

server processor utilization versus time for the pmake runs using 1, 4, 8, and 12 hosts. The

latter �gure demonstrates that migration compresses the work performed by the �le server

into shorter and shorter intervals, thus making demands on the server (and the network)

burstier.

The demand on the �le server is due in large part to name lookups. In Sprite, client

workstations send entire �le names to �le servers, and the �le servers are responsible for

traversing the directory hierarchy. File servers cache directory names, but they must still

respond to each RPC that attempts to open or get the attributes of a �le. Table 7.4 shows

that the number of name cache accesses varies greatly from benchmark to benchmark.

In particular, the �le server handled nearly 200,000 name lookups during the course of the

kernel compilation, which is an average of nearly 100 lookups per second when only one host

is used. This rate is from 1.5 to 4 times the rate of lookups during the other benchmarks,

and may be attributed to the large number of �les included by each source �le. Note that

the T

E

X benchmark, which had the lowest rate of name lookups (as well as a high average

number of lines per source �le) obtained the highest speedup using migration.

7.4.3 Simulations

Though migration has been used in Sprite to perform compilations for nearly two years, it

has only recently been used for more wide-ranging applications. Excluding compilations,

90 CHAPTER 7. PERFORMANCE

(b) 4 Hosts

Time (seconds)

0

20

40

60

80

100

U
t
i
l
i
z
a
t
i
o
n

(%)

(a) 1 Host

Time (seconds)

0

20

40

60

80

100

U
t
i
l
i
z
a
t
i
o
n

(%)

(d) 12 Hosts

0 1000 2000
Time (seconds)

0

20

40

60

80

100

U
t
i
l
i
z
a
t
i
o
n

(%)Time (seconds)

(c) 8 Hosts

0

20

40

60

80

100

U
t
i
l
i
z
a
t
i
o
n

(%)

10000 2000 0 1000 2000

0 1000 2000

File Server Utilization

Figure 7.7: Server processor utilization over time as a function of the number of hosts used in

parallel. The total processor time used on the server during the benchmark was roughly the same

in each case, varying from 290{350 CPU seconds.

7.5. CONCLUSIONS 91

simulations are the primary application for Sprite's process migration facility. It is now com-

mon for users to use pmake to run up to one hundred simulations, letting pmake control

the parallelism. The length and parallelism of simulations results in more frequent evic-

tions than occur with most compilations, and pmake automatically remigrates or suspends

processes subsequent to eviction.

In addition to having a longer average execution time, simulations also sometimes di�er

from compilations in their use of the �le system. While some simulators are quite I/O

intensive, others are completely limited by processor time. Because they perform minimal

interaction with �le servers and use little network bandwidth, they can scale better than

parallel compilations do. One set of simulations recently obtained over 800% e�ective

processor utilization|eight minutes of processing time per minute of elapsed time|over

the course of an hour, using all idle hosts on the system (up to 10{15 hosts).

7.5 Conclusions

Process migration provides an e�cient means to execute processes on multiple hosts si-

multaneously. The primary costs of migration are �le transfer and, when processes do not

migrate in conjunction with an exec call, virtual memory transfer. Other costs, such as host

selection, may usually be amortized across multiple migrations.

The overall speedup of parallel applications in Sprite is limited primarily by contention

for centralized resources such as �le servers and, potentially, network bandwidth. Pmake

is limited as well by the load it places on its host when it must interact with many child

processes at once. Thus, compilations obtain speedup factors in the range of three to six,

even when as many as 12 hosts are used at once to perform compilations. Long-running

compute-bound applications such as simulations cause less contention and amortize the cost

of process management over longer periods of time.

Because �le data caching in Sprite is e�ective, name lookups are the greatest cause

of contention for �le server processing. In his thesis, Nelson estimated that adding client

name caching would reduce �le server utilization by as much as a factor of two [Nel88]. It

would also decrease network utilization by up to a factor of two. Measurements of server

load during parallel compilations demonstrate that name caching is imperative if the full

bene�ts of migration are to be exploited. Using faster (or multiprocessor) �le servers would

also serve to increase the number of hosts that could execute an application in parallel

before saturation became a problem.

Chapter 8

Empirical Results

8.1 Introduction

The measurements in the preceding chapter indicate that process migration can potentially

improve the performance of a variety of applications signi�cantly. The bene�ts of migration

in practice, though, depend on more than just the speedup obtained by a particular com-

pilation or the time it takes to migrate a minimal process. They depend upon the extent

to which migration is used, the availability of hosts, the frequency and cost of eviction, and

other characteristics of the environment. Since migration has been in regular use for over a

year on a Sprite system with over 25 hosts and approximately 20 regular users, I have had

the opportunity to gather empirical data on usage patterns. (Unless speci�ed otherwise,

measurements presented in this chapter were collected over a one-month period, from 3

August 1990 to 3 September 1990.) Though the measurements are not representative of

all environments|for example, many of the users of Sprite are kernel developers|and the

small scale of the system (in terms of both the number of users and number of hosts) may

a�ect such factors as contention for idle hosts, these measurements can still validate some

design decisions and suggest ways for improvement. (Further experience with migration in

di�erent environments|for example, 50{100 workstations running computer-aided design

tools|would also be bene�cial, but is not yet possible.)

Two aspects of migration were of particular interest while collecting measurements of

migration. First, how much is migration used? If only a small fraction of all processing were

performed using migration, one might wonder whether migration is needed at all. Second,

how useful is migration by comparison to a simpler remote invocation facility? If evictions

rarely occurred, or evicted processes used little processor time after eviction, then one might

again wonder how useful migration is. In fact, as shown in this chapter, process migration

provides substantial bene�ts with respect to both total processing capacity and eviction.

One way to estimate the bene�t of remote execution is to measure the amount of pro-

cessing performed by processes that are not executing on their home machine. In a sense,

the amount of remote processing in the system does not represent an absolute increase in

92

8.1. INTRODUCTION 93

processing power: some processes might execute on remote hosts while their home machines

remain relatively idle. However, measurements of the system show that parallel execution

has provided an enormous improvement in processing capacity in practice. Hosts have exe-

cuted applications that have collectively obtained as much as 7 seconds' worth of processing

time per second of elapsed time, over a 3-hour period. Section 8.2 discusses the over-all

bene�ts of process migration, as indicated by the amount of execution performed by remote

processes.

The relative merits of migration and remote invocation are another issue entirely. For

several years, the research community has debated the desirability of process migration

with respect to load sharing. Eager, et al., reported that process placement is much more

important than migrating active processes and that migration provides limited improvement

beyond placement [ELZ88]. Krueger and Livny, on the other hand, found that migration

can provide signi�cant improvement beyond initial placement [KL88]. Finally, Cabrera

measured actual process lifetimes on a collection of VAXes running UNIX and found that

nearly all processes were short (median lifetime of 0.4 seconds, with more than 78% of

processes living less than one second) and that processes that live a long time are expected

to live longer; he concluded that process placement at creation time would be wasteful, and

instead long-running processes should be migrated after they have executed for a period of

time [Cab86].

I would argue that migration for the purpose of ensuring workstation autonomy is at

least as important as migration for redistributing load. In our environment, in fact, these

two goals are interrelated. When a user returns to a workstation with foreign processes,

Sprite migrates those processes to their home machine. From Cabrera's study, one might

question whether those processes are likely to execute for such a short period of time that

migrating them is unnecessary. Section 8.3 reports on the characteristics of process eviction

in Sprite. Although many processes terminate quickly after eviction, a small number of

processes perform a substantial amount of processing after being evicted. For this reason,

pmake automatically remigrates evicted processes to another host. Remigration avoids

overloading the home machine with multiple CPU-bound evicted processes.

In addition to measurements of remote execution and eviction usage, I measured the

typical frequency and costs of typical operations, such as the time to invoke a program on a

remote host. These measurements, reported in Section 8.4, demonstrate the additional cost

that open �les and modi�ed �le blocks incur in practice. Section 8.4 also reports on other

aspects of migration, such as the interaction between migration and cache consistency.

Section 8.5 discusses Sprite's host selection facility. It reports statistics such as the rate

of requests for idle hosts, the availability of idle hosts, and the rate at which hosts are

reclaimed.

Section 8.6 concludes the chapter.

94 CHAPTER 8. EMPIRICAL RESULTS

Host Total CPU Time Remote CPU Time Fraction Remote

garlic 314,218 secs 228,641 secs 72.77 %

crackle 172,355 14,451 8.38 %

sassafras 158,515 138,821 87.58 %

burble 151,117 2,352 1.56 %

vagrancy 107,853 81,343 75.42 %

buzz 96,402 260 0.27 %

sage 92,063 32,525 35.33 %

kvetching 91,611 26,765 29.22 %

jaywalk 75,394 24,017 31.86 %

joyride 58,231 6,233 10.70 %

Others 857,532 120,727 14.1 %

Total 2,175,291 676,135 31.08 %

Table 8.1: Remote processing use over a one-month period. The ten hosts with the greatest total

processor usage are shown individually. Sprite hosts performed roughly 30% of user activity using

process migration. The standard deviation of the fraction of remote use was 25%.

8.2 Overall Usage

In order to gather usage measurements, I modi�ed the operating system to record informa-

tion about the time accumulated by processes. When a process exits, the total processor

time used by the process is added to a global counter; if the process had been executing

remotely, its time is added to a separate counter as well. (These counters therefore exclude

some long-running processes that do not exit before a host reboots; however, these pro-

cesses are daemons, display servers, and other processes that would normally be unsuitable

for migration.) Over the measured interval, remote processes accounted for about 30% of

all processing done on Sprite. Some hosts ran applications that made much greater use of

remote execution, executing as much as 70{90% of their processor cycles on other hosts.

Table 8.1 lists some sample processor usage over this period.

Table 8.1 lists usage over a one-month period, but the bene�ts of migration are more

apparent if one considers shorter time-frames as well. For example, the host with the

greatest overall processor use (\garlic") had a three-hour period during which it obtained

an average of over three seconds of remote processor time per second of elapsed time, in

addition to one second of local processor time. \Sassafras" had a period when it obtained

seven seconds per real second. Both of these hosts were used for long-running parallel

simulations several times during the month.

As a �nal note, during the measured one-month period the total processor utilization

of the system was 2.3% (averaged over all times of day). Its utilization is an order of mag-

8.3. PROCESS EVICTION 95

nitude smaller than the utilization reported for Condor [LLM88], but as new long-running

parallelizable applications execute on Sprite, its utilization will likely increase signi�cantly.

8.3 Process Eviction

When a user returns to a workstation, the execution of foreign processes on the workstation

may degrade the user's interactive response. Sprite uses eviction to prevent long-term

performance degradation from foreign processes, but other alternatives are possible. If

users rarely returned when foreign processes executed on their host, then the system could

choose not to provide any special support for ownership. Measurements of our current

environment indicate that users rarely �nd processes on their hosts, but evictions occur

often enough to warrant having a means to deal with foreign processes. (See Section 8.5.3

for more information). Also, if processes only executed a short time subsequent to eviction,

they could be permitted to complete on their remote host.

I measured the processor time used by processes after they had been evicted. This time

indicates how long a process would continue to execute on the remote host in the absence

of process migration, unless it were terminated. (For this reason, a process that was evicted

multiple times would be measured from its �rst eviction.) I also measured the average time

to evict processes and the average number of processes evicted each time a user reclaimed

a host.

Though compilations tend to execute for a short enough time that eviction might be

unnecessary, some processes execute a substantial time. Not surprisingly, the hosts that

used the most remote processor time executed processes for substantial periods of time

following eviction. For example, a total of 82 processes that were evicted to \sassafras"

executed for an average of 21 minutes after they were evicted. Two other hosts, \garlic"

and \vagrancy," had a total of 250 processes evicted, each executing an average of 5 minutes

following eviction. Most other hosts had very few processes evicted, and those processes

executed for at most a few seconds after eviction. One may conclude that eviction (and

subsequent remigration to another idle host) is useful for long-running processes such as

simulations, and much less important for transient applications such as compilations.

Another metric that a�ects the feasibility and desirability of eviction is the total time

needed to evict processes. When a user types a keystroke, the system immediately starts to

evict foreign processes and relinquish their resources, such as memory. An average of 3.26

processes were evicted each time an eviction occurred. The average time to relinquish a

host completely was 3.44 seconds, with a standard deviation of 3.65 seconds across di�erent

hosts. The cost of eviction is of course a function of the processes evicted, and processes

with many modi�ed memory pages or �le blocks will take longer than average to evict. The

next section reports average costs associated with migration (evictions and otherwise).

96 CHAPTER 8. EMPIRICAL RESULTS

Type Count Fraction Number/Hour/Host

Exec-time 46382 86 % 1.76

Eviction 3037 6 % 0.12

Voluntary migration remote) home 3431 6 % 0.13

Voluntary migration home) remote 972 2 % 0.04

Total 53822 100 % 2.05

Table 8.2: Frequency of di�erent forms of migration over a 1-month period. Nearly all migration

has occurred in conjunction with the exec kernel call, with the remaining migrations roughly evenly

divided between eviction and voluntary migration home of long-running processes. Processes rarely

migrate away from the home machine except at exec-time. On average, a total of 2 migrations per

host per hour occur.

8.4 Migration Frequency and Costs

Process migration occurs in four ways in Sprite:

� Exec-time migration, when a process changes hosts at the same time it replaces its

address space with a new execution image. Exec-time migration is the simplest form

of migration, because the kernel transfers less state than when a process migrates

during execution.

� Eviction, when a process moves from a remote host back to its home machine as a

result of someone reclaiming the remote host. This happens when a user returns or

when the centralized server reclaims a host to assign it to another process.

� Voluntary migration from a process's remote host to its home machine, transferring the

entire address space. In Sprite, when a process on a remote host migrates to another

remote host, it must migrate home �rst. (This simpli�es the protocol for migration,

since the home machine is involved any time a process belonging to it migrates.)

Migration between two remote hosts normally occurs when a foreign process starts a

program that itself performs remote invocation|for example, if pmake runs another

pmake on a remote host and the latter pmake executes tasks in parallel.

� Voluntary migration from a process's home machine to a remote host (transferring the

entire address space). This form of migration is usually a result of pmake remigrating

a process to an idle host after it has been evicted from another host.

Table 8.2 lists the relative frequency of each form of migration. Exec-time migration is

the most common case, constituting 86% of all migrations. Eviction and voluntary migration

are both relatively infrequent; they are considered separately because their function is

8.4. MIGRATION FREQUENCY AND COSTS 97

Measurement Average Rate Standard Deviation

Among Hosts

Number of open �les 4.53/migration 1.00

Number of modi�ed

�le blocks

0.95/migration 0.28

Number of modi�ed

VM pages

36.62/migration 6.50

Size of migration RPC

bu�er

6.95 Kbytes/migration 0.82

exec-time migration 0.33 sec/migration 0.43 secs

eviction 2.98 sec/migration 3.11 secs

other migrations 0.95 sec/migration 0.16

Table 8.3: Characteristics of migrating processes. The time to migrate a process depends on

several factors, including the number of open �les the process has, howmanymodi�ed blocks for those

�les are cached locally, the number of modi�ed virtual memory pages the process has (if migration

is not done at exec-time), and the total size of the bu�er used to transfer the process's state to the

target machine. Measurements were taken on 15 SPARCstation 1 workstations over the course of

one month. (Note that the workstations were running kernels with tracing of remote procedure calls

and some other events enabled, so performance is not comparable to the measurements of minimal

overhead presented in the last chapter.)

di�erent. When evicting a foreign process, the goal is to relinquish its resources as quickly

as possible and to impact the user on the remote host as little as possible. When a process

migrates voluntarily, however, the purpose of migration is to make the process execute more

quickly, and there is no need to relinquish resources immediately. Although Sprite uses the

same paradigm in both cases, it would be possible to distinguish between the two cases: for

example, performing lazy copying of virtual memory when processes migrate voluntarily,

but ushing VM to a server when evicting processes.

Table 8.3 lists statistics about the cost of migration in Sprite. Since migration is cur-

rently used primarily for parallel compilations, most migrations involve four open �les: the

three \standard input, output, and error" streams, and an input �le with commands for

a shell. The input �le, which is typically shorter than 1 Kbyte, must also be ushed to

the �le server. Table 8.3 shows as well that the cost of eviction is signi�cantly more than

that of exec-time migration, but it is still small enough to impose minimal overhead on the

returning user.

File cache consistency is another aspect of migration overhead. In Section 5.2.2, I

described four scenarios for the state of a �le as a result of migration. Empirically, more

than half of all transferred �les change from being cacheable to being uncacheable. This

change is because the primary client of migration is pmake, and it uses pipes and a command

98 CHAPTER 8. EMPIRICAL RESULTS

Cacheability

Count Fraction

Before Migration After Migration

read-only, cacheable (same) 12,650 18 %

writable, cacheable (same) 1,236 2 %

uncacheable (same) 13,478 19 %

uncacheable cacheable 2,759 4 %

cacheable uncacheable 39,939 57 %

Total 70,062 100 %

Table 8.4: Caching behavior as a result of migration. Most �les change from being cacheable to

being uncacheable due to migration, but other patterns are also common.

script to communicate with its child processes. The pipes are by necessity shared between

pmake and its children. A script is created for each child and is executed after migration.

The parent pmake does not close its stream into the script, so streams to it exist on multiple

hosts after migration.

1

Other �les that are open during migrations are typically either

accessed in a read-only manner by all processes or are uncacheable before migration begins.

Table 8.4 summarizes these measurements of cache consistency.

8.5 Host Selection

In Chapter 6, I referred to several assumptions that guided the design of Sprite's host se-

lection facility: the wide-spread availability of idle hosts, the correlation between idle time

and time to eviction, and the clustering of requests for hosts. In order to validate those

assumptions, I instrumented the current Sprite host selection facility, recording usage pat-

terns in a collection of about 28 Sprite SPARCstation 1 and DECstation 3100 workstations

over a 25-day period. (This count does not include �le servers, which do not participate

in load sharing, or Sun-3 workstations, which run Sprite but are not used much.) Since

migration in Sprite is used only among homogeneous machines, the host selection facility

assigned hosts from within two pools averaging 14 hosts apiece; thus the maximum number

of hosts available to any one process was 14 rather than 28.

I measured host selection in order to answer a number of questions that relate to the

assumptions given above:

� How often are hosts idle?

1

This is apparently a bug in pmake and is not necessary for normal operation. It has the e�ect of skewing

the distribution toward uncacheable �les, but for each script that could be cached, there exists a pipe that

could not be. Therefore, half of the 57% of �les that become uncachable could possibly be cached after

migration.

8.5. HOST SELECTION 99

13 months 25 days

Time Frame In Use Idle In Use Idle

weekdays 31% 66% 29% 71%

o�-hours 20 78 26 74

total 23 75 27 73

Table 8.5: Host availability. Measurements are presented for both the 13-month interval for

which statistics were gathered and the 25-day period during which the host selection facility was

instrumented. Weekdays are Monday through Friday from 9:00 A.M. to 5:00 P.M. O�-hours are all

other times.

� How many hosts does a process typically request during its lifetime, and how often

do processes obtain as many hosts as they request?

� What is the relationship between evictions and idle time?

� How often are hosts reclaimed due to fairness considerations?

� How often are hosts reused by the same user?

8.5.1 Availability of Idle Hosts

One metric that a�ects the usability of a load sharing facility is the fraction of hosts available

at any given time. Over the course of the past 13 months, I have periodically recorded the

state of every host (active or idle) in a log �le. In this time, a surprisingly large number of

hosts have been available for migration at any time, even during the day on weekdays. This

is partly due to our environment, in which several users own both a Sun and a DECstation

and use only one or the other at a time. Some workstations are available for public use and

are not used on a regular basis. However, after discounting for extra workstations, I still �nd

a sizable fraction of hosts available, concurring with Theimer [TL88], Nichols [Nic87], and

others. Table 8.5 summarizes the availability of hosts in Sprite over the 13-month interval,

as well as the 25-day period during which the host selection facility was instrumented. (The

measurements over the shorter period are presented for consistency with later measurements

of the host selection facility.)

8.5.2 Host Allocations

I measured the success rate of host selection by recording the maximum number of hosts

requested by each process and the number of hosts obtained. As a rule the number requested

is either the number obtained or one greater than the number obtained, because a client

of the host selection facility tends to request each host individually and will only request

100 CHAPTER 8. EMPIRICAL RESULTS

host N after it has successfully obtained (N � 1) hosts. (This unfortunately means that

there is no way to determine how many hosts could ultimately have been used by a process

that has been denied a host.) During the 25-day period for which measurements were

collected, 17,800 processes made a total of 134,000 requests for idle hosts (for a rate of

3.25 requests/minute). Considering only the maximum number of hosts ever requested by

each process, a total of 46,400 hosts were requested. Over 15,000 of the processes obtained

as many hosts as they wanted (an 86% success ratio). The maximum number of hosts

requested by these processes averaged 2.6 hosts, with a maximum request of 16 hosts and

a standard deviation of 4.58 hosts. They obtained an average of 1.8 hosts, with a standard

deviation of 3.41 hosts. Figure 8.1 shows the distribution of hosts requested and hosts

obtained.

8.5.3 Host Idle Times

Each time a host becomes active after being idle, it may evict processes. If idle hosts are in

use for migration much of the time, then the likelihood of eviction will be high regardless

of the policy for assigning hosts to processes. On the other hand, if most hosts are not in

use at any given time, then evictions will only occur if processes happen to be executing

on a host when it becomes active again. In an environment such as ours|with an average

availability rate of 70{80%|the system should select hosts that are unlikely to become

active soon.

Idle time appears to be an important factor in making the determination of when a host

will become active again. I measured the amount of time hosts were idle when they were

selected for remote execution and the amount of time they were idle when they became non-

idle. Generally, hosts that were idle for at least 30 seconds remained idle for a signi�cant

length of time (averaging 26 minutes). Hosts were used by applications for an average of

only 62 seconds before being returned to the pool of idle hosts. Therefore, even if the cost of

eviction were substantial, evictions would be infrequent enough that it would be pro�table

to use hosts that were idle only 30 seconds or a minute. In the period under consideration,

only 700 of the 130,000 host assignments were revoked because a host became active. The

average idle time of all hosts assigned was 17 hours, but the average idle time of those hosts

that later evicted foreign processes was only 4 minutes. Thus, the policy of assigning hosts

in order of idle time is justi�ed: since most evictions occur on hosts that have only been

idle a short time, even though most processes are allocated hosts that have been idle a

long time, the likelihood of eviction is high only when hosts that have just become idle are

assigned. Table 8.6 summarizes these results.

8.5.4 Fairness Considerations

In Chapter 6, I described how a host selection facility may choose to reclaim hosts from

one process to assign them to another. In Sprite, hosts are reclaimed due to fairness about

as often as they are reclaimed because a workstation owner returns: during the measured

8.5. HOST SELECTION 101

Measurement Value

Average idle time of hosts before becoming active 26 minutes

Average time host used before being returned to pool 62 seconds

Average idle time of hosts when assigned 17 hours

Average idle time of hosts that evicted processes 4 minutes

Number of evictions/allocations 700/130,000

Table 8.6: Relationship between idle time and eviction likelihood. Only when processes migrate

onto hosts that have been idle a short time is eviction likely.

period, hosts were reclaimed due to fairness 760 times and due to eviction 700 times. This

works out to roughly an 8% likelihood that a process will lose at least one host due to

eviction or fairness.

8.5.5 Reusing Hosts

In order to �nd out how e�ective Sprite's simple host assignment algorithm is with respect to

reusing idle hosts, therefore potentially running with warm caches, I recorded the number of

times that hosts were assigned to processes on the same host twice in a row. I excluded gaps

caused by a host becoming active, since in those cases the host's cache would presumably

be loaded with other data.

Interestingly, the rate of host reuse has changed dramatically over time. In an earlier

measurement period, hosts were assigned to the same requesting host twice in a row in 93%

of all assignments. This trend was primarily due to the fact that host requests were bunched

in groups of requests from the same host, so processes on the same host would obtain and

release the same set of hosts repeatedly before a process from another host requested any

hosts. In fact, considering every pair of successive host assignments in isolation (and only

considering a single machine architecture at a time), 95% of successive requests were from

the same process or from two processes on the same host. In the measurement period

described in this chapter, however, only 36% of requests came from the same host as the

preceding request. Because requests were no longer bunched together, hosts were more

likely to be assigned to processes on di�erent hosts each time they became available. Only

49% of all assignments went to processes on the same host twice in a row, compared to the

earlier �gure of 93%. The di�erent between the two measurements is due to a change in

workload: the �rst measurement took place when migration was used almost exclusively

for short-lived applications such as compilations, while in the second measurement period

multiple long-running simulations contended with compilations for idle hosts.

Since the simple approach to assigning hosts in order of greatest idle time does not

take caching into account, one might wish to assign hosts on the basis of the last process

that used them. However, it is not clear that the bene�ts of warm �le caches outweigh the

102 CHAPTER 8. EMPIRICAL RESULTS

bene�ts of a decreased likelihood of eviction. If caching were more important, then it would

be appropriate to modify the Sprite host selection facility to record recent host assignments

and attempt to reassign hosts to the same client hosts repeatedly. Given the e�ectiveness

of the current algorithm with respect to avoiding evictions, the system should be careful to

consider caching e�ects only within a set of equally desirable candidates for migration|for

example, hosts that have all been idle for a considerable period of time.

8.6 Conclusions

The measurements of process migration usage in Sprite presented in this chapter suggest

three conclusions: �rst, that in actual use the overhead of migration is low relative to the

processing demands of applications that use it; second, that migration in Sprite is used

a signi�cant amount and has the capacity to be used signi�cantly more; and third, that

evictions are rare but occur often enough to justify providing migration as a mechanism for

reclaiming hosts.

As was described in Chapters 4 and 7, the cost of migration depends on the size of its

address space (if it is migrating at some time other than as part of an exec call), the number

of dirty �le blocks it has written, and the number of open �les a process has. In practice,

exec-time migration|the most common type of migration|usually involves very few open

�les and dirty �le blocks and no virtual memory, so it takes a few hundred milliseconds

to complete. Eviction is more costly, but even typical evictions take only a few seconds

at most. Therefore, for the applications using migration thus far, the bene�ts of increased

processor utilization (reported in Section 8.2) far outweigh the potential cost of occasional

evictions.

Over a 25-day interval, remote processor usage accounted for 30% of all processing, while

73% of the system on average could be executing remote processes. Thus, the migration

facility is being used a considerable amount, though it has the capability to provide even

more processing capacity. Idle hosts were su�ciently available to satisfy 86% of all processes

that use the load sharing facility. Note that as more long-running parallel applications use

the facility, the likelihood of contention for idle hosts will increase, but the total processing

performed using migration will also increase as the system utilization rises.

Finally, the low rate of evictions in Sprite might suggest that migration at arbitrary

times is unnecessary, and the implementation complexity of full process migration might be

avoided. However, the low rate of evictions in Sprite results from the low over-all utilization

of idle hosts, combined with the policy that gives preference to hosts that have been idle

the longest. Since machines often are idle for relatively short periods of time, if there were

applications to make use of idle hosts much more of the time, migration would make it

possible to take advantage of short available intervals without the need to checkpoint and

restart applications manually. I am starting to see this behavior to a limited extent as

Sprite users execute multiple instances of long-running simulations using migration, and I

expect such applications to become more common as load sharing facilities become more

8.6. CONCLUSIONS 103

sophisticated.

104 CHAPTER 8. EMPIRICAL RESULTS

satisfied

requesting

1 2 3 4 5 6 7 8 9 10
Hosts Requested

0

20

40

60

80

100

Processes (%)
Fraction of

Figure 8.1: Distribution of host requests and satisfaction rates. For a given number of hosts,

shown on the X-axis, the line labeled requesting shows the fraction of processes, using the host

selection facility, requesting at least that many additional hosts. The line labeled satis�ed shows, out

of those processes that requested at least that many hosts, the fraction of processes that successfully

obtained that many hosts at one point during their execution. Thus, 98% of all processes were able

to obtain at least one host, and over 80% of processes that requested at least ten hosts obtained 10

hosts. Only 24% of processes requested more than one host. The sharp decrease in the satisfaction

ratio of processes that requested exactly two hosts is attributable to fairness considerations. At

times when few hosts are available, nearly any process that requests one host can obtain it, because

it will be taken from a process with two or more hosts. A process that requests a second host will

receive it only if one is free or another process is already using three hosts. Processes that requested

three or more hosts had already received a second host, so contention for idle hosts during their

execution was not as much of a problem.

Chapter 9

Conclusions and Future Work

9.1 Introduction

In this thesis I have presented the design and implementation of a transparent process

migration facility in the context of the Sprite operating system. Sprite uses migration to

invoke commands on remote hosts and to evict foreign processes when hosts are reclaimed.

The degree of transparency provided by Sprite ensures that migration does not a�ect the

interaction of a migrated process with other processes or the user who invoked it. The

facility has been in regular use for nearly two years, which has allowed me to measure its

use empirically.

9.2 Summary of Results

The most important result of this thesis is its demonstration of the e�ectiveness of process

migration in a production environment. Migration has provided a signi�cant increase in

available processor capacity, accounting for over 30% of all processing performed on Sprite

over a one-month interval. Over shorter periods of time (e.g., hours), applications have

used migration to obtain the processing equivalent of up to seven processors on a single

(uniprocessor) host. Compilations and other �le-intensive applications obtain less speedup

because of contention for the processor on Sprite's �le server, as well as high load on the

workstation controlling the compilation. In those cases, speedups in the range of three to

six are typical.

To determine whether the use of eviction is warranted, I measured the processing de-

mands of evicted processes. I found that the execution time subsequent to eviction is

bi-modal, with many processes executing a short time after eviction and some processes

executing at length. Migration as a means to reclaim hosts might be over-kill in an environ-

ment that executed only short-lived applications, but long-running CPU-bound applications

such as simulations need to be migrated or terminated if foreign processes are not to degrade

105

106 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

interactive performance.

I have described the design of Sprite's migration facility, including the methods used to

ensure transparent remote execution. Sprite associates a home machine with each process

in order to make process migration transparent to both processes and users. Processes

appear to execute on their home machine throughout their lifetime, regardless of where

they physically execute. If they migrate away from their home machine, they depend on

that host for resources, but they have no dependencies on a remote host after migrating

back home.

Finally, I have considered several criteria and possible implementations of host selection

for an environment with a shared �le system and point-to-point communication. Several ar-

chitectures are possible for selecting hosts for load sharing, including a shared �le database,

a central host selection server, and distributed host selection servers. Each of these provides

acceptable performance and can scale to a su�cient number of hosts to be suitable for a

system such as Sprite. However, a centralized host selection facility is the only one that

provides high performance while ensuring that host assignments are fair and reect the

most current state of the system.

Empirical measurements have demonstrated a correlation between the amount of time

a host is idle and the time before it will become active again. For this reason, among idle

hosts, hosts are assigned in order of decreasing idle time. To avoid ooding a host with

multiple foreign processes, the host selection facility assigns at most one process to each

host at a time. These two simpli�cations have proven e�ective in practice, keeping the

eviction rate at less than one eviction per 100 migrations.

9.3 Future Work

So far, the Sprite community has used process migration for a limited number of tasks in

a community of tens of users and workstations. This research could be extended in any

number of ways, but the most immediate improvements might be to increase both the degree

to which load sharing occurs and the scale of the system measured. In addition, some basic

changes to the functionality of migration would make the facility more useful.

The easiest way to increase the frequency of load sharing would be to increase the

number of parallel applications using the system. Currently, pmake is the only parallel

application that most users execute with any frequency, and most invocations of pmake

are to compile �les. Some users now use pmake to perform parallel execution of a single

simulator with varying parameters, but such long-running applications are still rare: the

total utilization of the system over a one-month period was only 2%. Other applications

are likely suitable for migration, so as parallel applications for multiprocessors become more

common, those applications that do not rely on shared memory should be appropriate for

process migration as well. Also, traditionally sequential operations in existing applications

may be parallelizable: for example, the foreach loop in csh could easily be executed in

parallel if its semantics were rede�ned not to execute commands in a particular order.

9.3. FUTURE WORK 107

Increasing the scale of the system has rami�cations beyond those relating to load sharing.

For example, in his thesis, Welch discussed the issue of Sprite �le servers handling ten times

as many clients as they currently do [Wel90]. It would be edifying to expand Sprite to handle

many more machines, and to evaluate how the �le system and host selection facility are

stressed. Obviously, the �le system is already stressed by some applications of migration, but

performing �le name lookups on client workstations should reduce contention considerably.

(Gray and Cheriton's �le \leases" [GC89] are promising in this respect.) With many hosts

the host selection facility may also potentially become a bottleneck, unless host assignments

may be cached e�ectively to reduce the rate of requests to a central server.

Finally, the existing process migration facility needs additional functionality in the fol-

lowing respects:

� There should be more automatic management of migration, especially in the case

of eviction. Currently, only pmake provides support for remigrating or suspending

processes after eviction. A system-wide facility should manage remigration. The

system could also potentially detect when more long-running processes than processors

are executing on a host, and migrate processes to distribute load.

� In the absence of network-wide shared memory, processes that share memory should

be permitted to migrate together to the same host (currently, they cannot migrate

at all). Even better, the system could permit processes on di�erent hosts to share

memory.

� The system should permit remote execution on machines of di�erent types. Currently,

migration is supported only among homogeneous architectures, even when the exe-

cution image of a process changes during migration as the result of an exec kernel

call. The reason for this restriction is that kernel calls are forwarded to the home

machine, and no allowance has yet been made for forwarding calls between machines

of di�erent byte-orders. However, there is no fundamental reason for keeping this

restriction except a lack of time to modify the implementation|LOCUS, for exam-

ple, supports heterogeneous remote invocation [PW85]|and allowing heterogeneous

remote invocation would expand the pool of available hosts for remote invocation.

� The system should also permit a nontransparent variant of migration, in which there

would be no residual dependencies on the home machine|in fact, the process's home

machine itself would change to a di�erent machine. This extension would permit

processes to move in order to avoid a machine that is about to be shut down. It

would also permit commands to be executed in the environment of another machine,

similar to rsh but more e�cient and permitting �les to be inherited.

� Host selection in a multiprocessor environment must be evaluated. The paradigm

in Sprite for reserving access to a host has been e�ective on uniprocessors, but with

multiple processors available per host, di�erent techniques may be more appropriate.

108 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.4 Conclusion

Though remote invocation is common in distributed systems, process migration has been

implemented in only a few. However, existing implementations of migration prove that

migration is feasible, and practical experience with migration in Sprite demonstrates that it

has the potential to provide substantial performance improvements. Users of migration in

Sprite are enthusiastic about it, not just because it improves performance but also because

evictions are so nonintrusive. Migration has not only been accepted in Sprite, it is now

taken for granted.

In the future, the computing power of a single host is likely to continue to increase dra-

matically, but there will always be individual applications with the ability to use processors

beyond those on a single host. The goal of future systems in this respect will be to help

applications make full use of a system's resources in a fair and e�cient manner. Process

migration will be an important tool for meeting that goal.

Appendix A

System Call Management

When a process executes on a remote host, it performs system calls by trapping into the

kernel on the remote host. As described in Section 4.3.2, in most cases the remote kernel

services the call completely on its own, with no need to contact the process's home machine.

In some cases, the remote kernel forwards the call to the home machine, and the call

is processed completely by the kernel on the home machine. Normally, the call and its

arguments are encapsulated a single procedure, with no interpretation performed by the

remote host. Finally, in a few cases a kernel call requires action by both the remote host

and the home machine. This action may be a complex sequence of RPC's (for example,

the wait call obtains information about exiting child processes, and it may put the foreign

process to sleep if no exiting children exist) or a simple update of a �eld in the process's

process control block.

This appendix lists how each system call is handled in Sprite to ensure transparent

process migration. Because Sprite attempts to be compatible with 4.3BSDUNIX, and UNIX

is more widely known than Sprite, I list the system calls available in 4.3BSD UNIX [Com86].

All system calls that are available in Sprite but have no UNIX equivalent are handled

transparently by the remote host, with one exception: the call to initiate migration is

forwarded home, since it a�ects processes relative to their home machine.

109

110 APPENDIX A. SYSTEM CALL MANAGEMENT

Name Disposition Comments

accept handle locally uses �le system connection to internet server

access handle locally talks directly to �le servers

acct unimplemented

adjtime unimplemented

bind handle locally uses �le system connection to internet server

brk handle locally state transferred at migration time

chdir handle locally talks directly to �le servers

chmod handle locally talks directly to �le servers

chown handle locally talks directly to �le servers

chroot unimplemented

close handle locally talks directly to �le servers

connect handle locally uses �le system connection to internet server

creat handle locally talks directly to �le servers

dup handle locally local bookkeeping

execve handle jointly updates name of program invoked

exit handle jointly clean up state on both hosts

fcntl handle locally talks directly to �le servers

ock handle locally talks directly to �le servers

fork

vfork

handle jointly initialize state of new process on home

machine

fsync handle locally talks directly to �le servers

getdtablesize handle locally location-independent

getgid handle locally state transferred at migration time

getgroups handle locally state transferred at migration time

gethostid unimplemented

111

Name Disposition Comments

gethostname handle locally

remote host returns home machine and cur-

rent execution site; library returns home ma-

chine by default

getitimer handle locally state transferred at migration time

getpagesize handle locally

location-independent: processes migrate only

between machines with the same page size

getpeername handle locally uses �le system connection to internet server

getpgrp blindly forward home

home machine maintains state of processes

that may be distributed on di�erent hosts

getpid handle locally location-independent

getpriority handle locally state transferred at migration time

getrlimit unimplemented

getrusage handle jointly

remote host knows process's current usage,

but home machine stores usage of children

getsockname handle locally uses �le system connection to internet server

getsockopt handle locally uses �le system connection to internet server

gettimeofday blindly forward home clocks are not synchronized

getuid handle locally state transferred at migration time

ioctl handle locally talks directly to �le servers

kill handle locally location-independent

killpg blindly forward home

home machine maintains state of processes

that may be distributed on di�erent hosts

link handle locally talks directly to �le servers

listen handle locally uses �le system connection to internet server

lseek handle locally

talks directly to �le servers (when o�sets

shared)

mkdir handle locally talks directly to �le servers

mknod blindly forward home

devices may be speci�c to host and must be

created in the context of the home machine.

mount blindly forward home mounts disk on home machine

open handle locally talks directly to �le servers

pipe handle locally state maintained by remote host

112 APPENDIX A. SYSTEM CALL MANAGEMENT

Name Disposition Comments

pro�l handle locally managed by current execution site

ptrace unimplemented

quota unimplemented

read handle locally talks directly to �le servers

readlink handle locally talks directly to �le servers

reboot handle locally

intentionally nontransparent (calls for system

administration not forwarded)

recv handle locally uses �le system connection to internet server

rename handle locally talks directly to �le servers

rmdir handle locally talks directly to �le servers

select handle locally talks directly to �le servers

send handle locally uses �le system connection to internet server

setgroups handle locally state transferred at migration time

setpgrp handle jointly home machine updates copy of state

setquota unimplemented

setregid handle locally state transferred at migration time

setreuid handle jointly home machine updates copy of state

shutdown handle locally intentionally nontransparent

sigblock handle locally managed by current execution site

sigpause handle locally managed by current execution site

sigreturn handle locally managed by current execution site

sigsetmask handle locally managed by current execution site

sigstack handle locally managed by current execution site

sigvec handle locally

managed by current execution site, transferred

during migration

socket handle locally uses �le system connection to internet server

Name Disposition Comments

socketpair handle locally uses �le system connection to internet server

stat handle locally talks directly to �le servers

swapon unimplemented

symlink handle locally talks directly to �le servers

sync handle locally talks directly to �le servers

syscall unimplemented

truncate handle locally talks directly to �le servers

umask handle locally state transferred at migration time

unlink handle locally talks directly to �le servers

utimes handle locally talks directly to �le servers

vhangup unimplemented

wait handle jointly

home machine maintains state about exiting

processes

write handle locally talks directly to �le servers

Appendix B

Compilation Speedup

This appendix contains a table with the data corresponding to Figure 7.3 on page 85.

Number of Hosts

Program 1 2 4 6 8 10 12

gremlin 1.00 1.63 2.67 3.40 4.03 4.21 4.43

kernel 1.00 1.69 2.75 3.59 3.96 4.13 4.35

pmake 1.00 1.55 2.29 2.75 2.98 2.91 2.95

T

E

X 1.00 1.81 3.09 3.91 4.67 5.18 5.42

Table B.1: Speedup of compilations using a variable number of hosts.

113

Bibliography

[ABB

+

86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and

M. Young. Mach: A new kernel foundation for UNIX development. In Pro-

ceedings of the USENIX 1986 Summer Conference, July 1986.

[AF89] Y. Artsy and R. Finkel. Designing a process migration facility: The Charlotte

experience. IEEE Computer, 22(9):47{56, September 1989.

[AK88] R. Alonso and K. Kyrimis. A process migration implementation for a unix

system. In Proceedings of the USENIX 1988 Winter Conference, pages 365{

372, Dallas, TX, February 1988.

[Amd67] G. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proc. AFIPS Spring Joint Computer Conference,

Atlantic City, N.J., April 1967.

[Baa86] E. H. Baalbergen. Parallel and distributed compilations in loosely-coupled

systems: A case study. In Proceedings of Workshop on Large Grain Parallelism,

Providence, RI, October 1986.

[BBNG

+

89] A. Barak, R. Ben-Nattan, S. Guday, L. Picherski, O. Sasson, and E. Siegel-

mann. Running distributed applications under the MOSIX multi-computer

system. Technical Report 89-15, Hebrew University of Jerusalem, November

1989.

[Ber85] Brian Bershad. Load balancing with maitre d'. Technical Report UCB/CSD

86/276, University of California, Berkeley, CA, December 1985.

[Bir85] K. Birman. Replication and fault-tolerance in the ISIS system. In Proceedings

of the 10th Symposium on Operating System Principles, pages 79{86, Orcas

Island, WA, December 1985. ACM.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM

Transactions on Computer Systems, 2(1):39{59, February 1984.

[BS85] A. Barak and A. Shiloh. A distributed load-balancing policy for a multicom-

puter. Software|Practice and Experience, 15(9):901{913, September 1985.

114

BIBLIOGRAPHY 115

[BSW89] A. Barak, A. Shiloh, and R. Wheeler. Flood prevention in the MOSIX load-

balancing scheme. IEEE Computer Society Technical Committee on Operating

Systems Newsletter, 3(1):23{27, Winter 1989.

[Cab86] L.-F. Cabrera. The inuence of workload on load balancing strategies. Tech-

nical Report RJ5271, IBM Almaden Research Center, August 1986.

[Che87] A. R. Cherenson. The sprite internet protocol server. Master's thesis, Com-

puter Science Division, Dept. of Electrical Engineering and Computer Sciences,

University of California, Berkeley, CA, 1987.

[Che88] D. R. Cheriton. The V distributed system. Communications of the ACM,

31(3):314{333, March 1988.

[Com86] Computer Science Division, University of California, Berkeley. UNIX User's

Reference Manual, 4.3 Berkeley Software Distribution, Virtual VAX-11 Ver-

sion, April 1986.

[Coo90] R. Cooper. Personal Communication, 1990.

[Dan82] R. Dannenberg. Resource Sharing in a Network of Personal Computers. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA, December 1982. Report

No. CMU-CS-82-152.

[DO91] F. Douglis and J. Ousterhout. Transparent process migration: Design alter-

natives and the Sprite implementation. Software|Practice and Experience,

21(8):757{785, August 1991.

[ELZ88] D. L. Eager, E. D. Lazowska, and J. Zahorjan. The limited performance

bene�ts of migrating active processes for load sharing. In ACM SIGMETRICS

1988, May 1988.

[Fel79] S. I. Feldman. Make | a program for maintaining computer programs.

Software|Practice and Experience, 9(4):255{265, April 1979.

[FH89] C. J. Fleckenstein and D. Hemmendinger. Using a global name space for

parallel execution of UNIX tools. Communications of the ACM, 32(9):1085{

1090, September 1989.

[GC89] Cary G. Gray and David R. Cheriton. Leases: an e�cient fault-tolerant mech-

anism for distributed �le cache consistency. In Proceedings of the 12th ACM

Symposium on Operating System Principles, pages 202{210, December 1989.

[KL88] P. Krueger and M. Livny. A comparison of preemptive and non-preemptive load

distributing. In Proceedings of the 8th International Conference on Distributed

Computing Systems, pages 123{130, San Jose, CA, June 1988. IEEE.

116 BIBLIOGRAPHY

[LH89] K. Li and P. Hudak. Memory coherence in shared virtual memory systems.

ACM Transactions on Computer Systems, 7(4):321{359, November 1989.

[Lit87] M. Litzkow. Remote UNIX. In Proceedings of the USENIX 1987 Summer

Conference, June 1987.

[LLM88] M. Litzkow, M. Livny, and M. Mutka. Condor | a hunter of idle workstations.

In Proceedings of the 8th International Conference on Distributed Computing

Systems, pages 104{111, San Jose, CA, June 1988. IEEE.

[ML87] M. Mutka and M. Livny. Pro�ling workstations' available capacity for remote

execution. In Performance '87, Proceedings of the 12th IFIP WG 7.3 Sympo-

sium on Computer Performance, pages 529{544, Brussels, Belgium, December

1987.

[Mor] J. Morris. Con�rmed via personal communication.

[MvRT

+

90] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse, and H. van

Staveren. Amoeba: A distributed operating system for the 1990s. IEEE Com-

puter, 23(5):44{53, May 1990.

[Nel88] M. N. Nelson. Physical Memory Management in a Network Operating System.

PhD thesis, University of California, Berkeley, CA 94720, November 1988.

Available as Technical Report UCB/CSD 88/471.

[Nic87] D. Nichols. Using idle workstations in a shared computing environment. In

Proceedings of the Eleventh ACM Symposium on Operating Systems Principles,

pages 5{12, Austin, TX, November 1987. ACM.

[Nic90] D. Nichols. Multiprocessing in a Network of Workstations. PhD thesis,

Carnegie Mellon University, February 1990.

[NWO88] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite network �le

system. ACM Transactions on Computer Systems, 6(1):134{154, February

1988.

[OCD

+

88] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch. The Sprite

network operating system. IEEE Computer, 21(2):23{36, February 1988.

[PPTT90] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9 from Bell Labs. In

UKUUG Summer 1990 Conference Proceedings, pages 1{9, London, England,

July 1990.

[PW85] G. J. Popek and B. J. Walker, editors. The LOCUS Distributed System Archi-

tecture. Computer Systems Series. The MIT Press, 1985.

BIBLIOGRAPHY 117

[RE87] E. Roberts and J. Ellis. parmake and dp: Experience with a distributed,

parallel implementation of make. In Proceedings from the Second Workshop on

Large-Grained Parallelism. Software Engineering Institute, Carnegie-Mellon

University, November 1987. Report CMU/SEI-87-SR-5.

[SGK

+

85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and

implementation of the Sun network �lesystem. In Proceedings of the USENIX

1985 Summer Conference, pages 119{130, June 1985.

[SI89] J. M. Smith and J. Ioannidis. Implementing remote fork() with check-

point/restart. IEEE Computer Society Technical Committee on Operating

Systems Newsletter, 3(1):15{19, Winter 1989.

[Sun87] Sun Microsystems. Sun Release 4.0 Commands Reference Manual, 1987.

[SvE89] A. Stolcke and T. von Eicken. Distributed probabilistic load information man-

agement in sprite. Term project, Computer Science 262, University of Califor-

nia, Berkeley, May 1989.

[The86] M. Theimer. Preemptable Remote Execution Facilities for Loosely-Coupled

Distributed Systems. PhD thesis, Stanford University, 1986.

[TL88] M. Theimer and K. Lantz. Finding idle machines in a workstation-based dis-

tributed system. In Proceedings of the 8th International Conference on Dis-

tributed Computing Systems, pages 112{122, San Jose, CA, June 1988. IEEE.

[TLC85] M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote execution fa-

cilities for the V-System. In Proceedings of the 10th Symposium on Operating

System Principles, pages 2{12, December 1985.

[Wel86] B. B. Welch. The Sprite remote procedure call system. Technical Report

UCB/CSD 86/302, Computer Science Division, EECS Department, University

of California, Berkeley, June 1986.

[Wel90] B. B. Welch. Naming, State Management, and User-Level Extensions in the

Sprite Distributed File System. PhD thesis, University of California, Berkeley,

CA 94720, February 1990. Available as Technical Report UCB/CSD 90/567.

[WM89] B. J. Walker and R. M. Mathews. Process migration in AIX's transparent

computing facility (TCF). IEEE Computer Society Technical Committee on

Operating Systems Newsletter, 3(1):5{7, Winter 1989.

[WO88] B. B. Welch and J. K. Ousterhout. Pseudo devices: User-level extensions to

the Sprite �le system. In USENIX 1988 Summer Conference, pages 37{49,

San Francisco, CA, June 1988.

118 BIBLIOGRAPHY

[Zay87a] E. Zayas. Attacking the process migration bottleneck. In Proceedings of

the Eleventh ACM Symposium on Operating Systems Principles, pages 13{22,

Austin, TX, November 1987.

[Zay87b] E. Zayas. The Use of Copy-On-Reference in a Process Migration System. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA, April 1987. Report No.

CMU-CS-87-121.

[Zho87] S. Zhou. Performance Studies of Dynamic Load Balancing in Distributed Sys-

tems. PhD thesis, University of California, Berkeley, CA, October 1987. Tech-

nical Report No. UCB/CSD 87/376.

